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Abstract

The current paper focus on solving k-tridiagonal linear systems of equations via transformation. It
investigates numeric and symbolic algorithms for solving such systems. Based on the symbolic
algorithm, a MAPLE program is written. The computational cost of the algorithms is given. Some
illustrative examples are introduced.
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1 Introduction

In many scientific and engineering applications, different special linear systems of equations arise.
For such systems the coefficient matrix has special structure. Sparse matrices which contain a
majority of zeros occur are often encountered. It is usually more efficient to solve these systems using
tailor-made algorithms, much faster and with less storage than a full matrix. This can be achieved
by taking advantage of the special structure of the coefficient matrix, see for instance, ( [1], [2], [3])-
Important examples are band matrices, and the most common cases are the matrices of tridiagonal
type. A tridiagonal matrix is one with nonzero entries along the main diagonal and one diagonal
above and below the main one. Consequently tridiagonal matrix takes the form:

d1 al 0 0
b1 d2 az
T=1|q9 . -~ o | (1.1)

0 0 bn71 dn

The matrix in (1.1) is frequently appears in many applications. For example in parallel computing,
telecommunication system analysis, solving differential equations using finite differences, heat conduction
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and fluid flow problems. The interested reader may refer to ( [4], [5], [6], [7], [8], [9], [10], [11], [12],
[183], [14]) and the references therein.

n

Definition 1.1. For positive integers n = 3,4,... and k = 1,2,...,n — 1, a matrix ¥ = (tij)ij=1 Of
order n is called k-tridiagonal if

t;; =0, for |i—j]#0 and k. (1.2)

For example,
dl O O al O
0 d 0 0 a
=10 0 d 0 0
by 0 0 ds O
0 b 0 0 ds

For k > n, the matrix 7"’ is a diagonal matrix and the case k = 1 gives the ordinary tridiagonal matrix
n (1.1). As pointed out in [15], the matrix T plays an important role in describing generalized k-
Fibonacci numbers. Furthermore, the matrix 7. has recently received attention by some authors (
[16],[17], [18]). The nonzero elements of the matrix in (1.2) can be stored in 3n—2k memory locations
by using the three vectors @ = [a1, a2, ...,an—k], b= [b1,b2,...,bp_k],and d = [di1,d2, ..., dxs].

The motivation of the current paper is to develop new algorithms for solving k-tridiagonal linear
systems of the form:

T x = f, (1.3)
with _ -
dl O 0 al 0 0
0 d2 0 O a2z
0 0
T”(zm: 0 . . . . An—k ’ (14)
by 0 .. oo 0
0 b 0
L O ... 0 bus 0 .. 0 dn |

where 1 < k < n, X=[x1, &2, ..., z,)" and f=[f1, fa, ..., fa]” .

Throughout this paper, |z] denotes the greatest integer less than or equal to z. Also, the word
'simplify’ means simplify the expression under consideration to its simplest rational form.

The organization of the paper is as follows. The main results are given in Section 2. In Section 3, a
MAPLE procedure is introduced. Some illustrative examples are given in Section 4.

2 Main Results

In this section, we are going to consider the construction of new algorithms for solving linear systems
of equations of k-tridiagonal type. For this purpose it is convenient to introduce the vector e =
[e1, e2, ..., e,] With components given by:

{ d;, fori=n,n—1,...n—k+1
€e; —

di—%b fori=n—kn—k-1,.,1

(2.1)
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The system (1.3) can be described by the augmented matrix, G given by:

[di 0 0 a0 0 f1

0 d» O 0 a2 fe
0 0 f3
= 0 an—k (2.2)

bp O 0
0 b 0 frn—2
. . e O dnfl O fnfl

L 0 0 bnfk 0 0 dn fn a

Let R; denotes the i-th row of the matrix G. Performing the following row operations on G, in the same

order:

Fori=n,n—-1,..,n—k+1do

End do.

Fori=n—kn—-%k—1,...,1do
Ri — R»L —aiR¢+k

End do.
Then we have the equivalent transformed linear system of the form:
M1 0 0 Zy ]
0 1 Zo
0 Zs
’ , (2.3)
Yi
0 Y Zn—2
| O 0 Yo O 0 1 Zn
where
bi—r .
Yi = o i=nn—1,.,k+1,
and
(2.4)

fori=nn—-1,...n—k+1

—(fi — ai Zitx), fori=n—kn—k—1,..,1.

<
Il

—N

D=z

The transformed system (2.3) is easy to solve by using forward substitution. Therefore the linear
system (1.3) can be solved using the following algorithm:

Algorithm 2.1. Numeric algorithm for solving k-tridiagonal linear system.
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To solve the linear system of the form (1.3), we may proceed as follows:

INPUT: Order of the coefficient matrix n, value of k and the values, a;, b;, i = 1,2,...,n — k,
di, fi,1=1,2,...,n.
OUTPUT: The solution vector X = [z1, 22, ..., zn]".
Step 1: If k <= [ %] then
Fori=n,n—1,...,n—k+1do
Set:
€e; = di.
Yiok = b’;—,k
Zi=1.
End do.
Fori=n—kn—-%k—1,..,k+1do
Compute and simplify:

€; = dL — a; Y;

Yiok = Zé_ik7

Z; = e%(fz —ai Zitk)-
End do.
Fori=k,k—1,....,1do

e; = di — Q; }/1

Zi = e%(fz —a; Zitk)-
End do.

Else

Fori=n,n—1,..,n—k+1do

Set:

€; :di.

zZ; =1
Enddo.

Fori=n—kn—-%k—1,..,1do
Compute and simplify:

j— 2

@ Citk’

€e; = dilf a; Y;
Z; = a(fi — i Zitk)-
End do.
End if.

Step 2: Use the k-DETGTRI algorithm [16] to check the non-singularity of the coefficient
matrix of the system (1.3).

Step 3: If det(Tﬁf“)) = 0, then Exiterror('No solutions’) end if.

Step 4: Compute the solution vector X = [z, x, ..., z,]" using
Fori=1,2,...,k do
T; = Zi,
End do.

Fori=k+1,k+2,...,ndo
i =Zi = Yi pTik

End do.

The Algorithm 2.1, will be referred to as k-TRANSTRI-I algorithm. The cost of this algorithm is

(5n — 4k) multiplications/divisions and (3n — 3k) addtions/subtractions, provided that the coefficient
matrix (1.4) is nonsingular.
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The following symbolic version algorithm is developed in order to remove the cases where the numeric
algorithm k-TRANSTRI-I fails. The parameter 't in the algorithm is just a symbolic name. It is a
dummy argument and its actual value is zero.

Algorithm 2.2. Symbolic version algorithm for solving k-tridiagonal linear system.

To solve the linear system of the form (1.3), we may proceed as follows:

INPUT: Order of the coefficient matrix n, value of k and the values, a;, b;, 1 =1,2,...,n — k,
di, fz', = 1,2,...,71.
OUTPUT: The solution vector X = [z1, 2o, ..., z,]".
Step 1: If k <= [ 3] then
Fori=n,n—1,...,n—k+1do
Set:
e; =d;. Ife; =0thene; =t endif.
Yip = b%k
Zi=1L
End do.
Fori=n—k,n—k—1,..,k+1do
Compute and simplify:
e =d; —a; Y;. |f€1 = 0 then e; =t end if.

i—k
Yvi—k‘: 7(el )

Zy = a(fi — i Zitk)-

End do.

Fori=kk—1,..,1do
ei=d; —a; Y;. Ife; =0thene; =t endif.
Z; = e%(fz —a; Zitk)-

End do.

Else

Fori=n,n—1,..,n—k+1do

Set:

e; =d;. Ife; =0thene; =t endif.

z; =1
Enddo.
Fori=n—kn—-%k—1,...,1do

Compute and simplify:

Yi= 6z'bj;k’

e, =d; —a; Y. Ifei:Othen €; =t end if.

Zy = e%(fz — i Zitk)-

[y

Step 2: Use the k-DETGTRI algorithm [16] to check the non-singularity of the coefficient
matrix of the system (1.3).

Step 3: If det(7}\*)) = 0, then Exiterror('No solutions’) end if.

Step 4: Compute the solution vector X = [z, xa, ..., x| using
Fori=1,2,...,k do
T = Zi,
End do.

Fori=k+1,k+2,....,ndo
Ti=2;i —Yi pTik

1232



€1

British Journal of Mathematics and Computer Science 4(9), 1228-1239, 2014

End do.

Step 5: Substitute ¢ = 0 in all expressions of the solution vector x;,: = 1,2, ..., n.

The Algorithm 2.2, will be referred to as k-TRANSTRI-Il algorithm. The solution vector x of the system

(1.3) is in fact the solution vector of the linear system:

1 0
0 1
0
0
Y1
0 Y
:

0 Y,—x O

T2
x3

Tn—2
Tn—1
Tn

Zn72
Zn—l
Zn,

where the values Z;, i = 1,2, ...,n in (2.4) are the solution of the linear system:

€1

€2

From (2.5) and (2.6), we get

€2

€n—1 0
0 en

0
0
Gn—k
0
0
en—1 0
0 en
1 0
0 1
0
0
Y1
0 Ys
0 0.

Yn—k

0

fi
f2
I3

fn.—2
fnfl
In

(2.6)
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From (1.3) and (2.7), we obtain the Doolittle U L factorization [19] of T in the form:

[di O 0 ap 0 0
0 do O 0 a2
0 0
Tk = 0 dn—k An—k
by 0 ... T T T 0
0 b 0 ;
. 0 dpn-1 0
L0 0 b O 0 dn |
[er O 0 a O 0o 1T 1 0
0 e O 0 a2 0 1
0 0 0
— An—k 0
0 Yi
0 0 Y,
: ens1 O O |
Lo ... .0 en JLO ... 0 Yu, O
_ L,

1 0 0 e:il 0 0 Ter 0
0 1 o0 0 a2 0 e
€k+42
0 0 0
", . . . An L
T® — . . . . fn=h 0
. ) } } 0 by
0 0 b
10 0
L O 0 1 ] L 0 O bn—k 0

€n

(2.9)
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Corollary 2.1. LetT ¥ be the backward matrix of the k-tridiagonal matrix T in (1.4), and given by:

r o0 . ... 0 ai 0 ... 0 di1
0 a - ... o d 0
ds
0 0
R o (2.10)
0 ba 0
0  dn . . R :
L dn 0 cee 0 by O ... ... 0
Then the backward tridiagonal linear system
T [ur, ug, ooy un]” = f (2.11)
has the solution: w; = Tny1-4,1 = 1,2,..., | 5|, where [z1,z2,. .., xn]T is the solution vector of the

linear system (1.3).

Proof. Consider the n x n permutation matrix P defined by:

fo ... ... 0 117
: 1 0
P=|: . o o (2.12)
0 1 :
! 4 0 |
For this matrix, we have:
pt=pP"=P (2.13)
Since R
T =1 p (2.14)

Then using (2.13) and (2.14), the result follows.

Corollary 2.2. The determinants of the coefficient matrices T\*) and T in (1.4) and (2.10) are
given respectively by:

det(T) =[] er (2.15)
r=1

and
n(n—1)

det(TM)y = (=1)" = (ﬁer), (2.16)

where ey, ez, ...,e, asin (2.1).

3 COMPUTER PROGRAM

In this section, we are going to introduce a MAPLE procedure for solving linear system of k-tridiagonal
type (1.3). The procedure is based on the algorithm k-TRANSTRI-Il. The procedure alters the
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contents of the vectors d, b and f. Eventually, the contents of the vectors e, Y and Z are stored
ind, b and f, respectively.
> restart:
ktritrans:= proc(n::posint, k::posint,d::vector, a::vector, b::vector,f::vector)
local i:
global x,T:
x:= vector(n):
if £ <= floor(%) then
for i from n by -1 to n-k+1 do
if d[i] = 0 then d[i]:=t fi:
b[i-k]:=simplify(b[i-K]/d[i]): f[i]:=simplify(f[i]/d[i]):
od:
for i from n-k by -1 to k+1 do
d[i] := simplify(d[i]-a[i]*b[i]);
if d[i] = 0 then d[i] :=t; fi:
b[i-k] := simplify(b[i-k]/d[i]);
f[i] := simplify((f[i]-f[i+k]*a[i])/d[i]);
od;
forifromk by -1to 1 do
d[i] := simplify(d[i]-a[i]*b[i]);
if d[i] = 0 then d[i] :=t; fi:
fi] := simplify((f[i]-f[i+k]*a[i])/d[i]);
od;
else
for i from n by -1 to n-k+1 do
if d[i] = 0 then d[i]:=t fi:
fli]:=simplify(f[il/d[i]):
od:
for i from n-k by -1 to 1 do
b[i]:=simplify(b[i]/d[i+k]):
d[i] := simplify(d[i]-a[i]*b[i]);
if d[i] = 0 then d[i] :=t; fi:
f[i] := simplify((f[i]-fli+k]*a[i])/d[i]); od;
fi:
# To compute the determinant of the k-tridiagonal matrix#
T:= subs(t =0,simplify(product(d[r],r= 1..n))):
if T =0 then
error(”Singular Matrix”)
else
# To compute the Solution X, of the system. #
forito k do
x[i]:=f[il;
od:
for i from k+1 to ndo
x[i]:=simplify((f[i]-b[i-K]*x[i-k]));
od;
eval(x);
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fi:
end proc :

4 lllustrative Examples

Example 4.1. Solve the k-tridiagonal linear system

2 0 0 00 0 1 0 0 07][m 3
001 0 00 0 0 -1 0 0[] a 0
00 -1 00 0 0 0 2 0] a 3
000 0 30 0 0 0 0 4]/ a 4
000 0 04 0 0 0 0 O0f|a|_| 0
00 0 00 20 0 0 0| a | | -6
2.0 0 00 0 5 0 0 0]/ a 7
0 -1 0 00 0 0 3 0 0[] 4
000 3 00 0 0 0 —1 0[] 1
000 0 20 0 0 0 0 3]|x0] | 3 |

Solution: Here, we have
n=10k=6a=[1,-1,2,4,d=[2,1,-1,3,4,-2,5,3, 1, 3],
b=1[2-1,3,2],andf = [3,0,3,4,0,-6,7,4,1,3].

By applying the k-TRANSTRI-I algorithm, we get

e e=(22514,-25.3,-1,3].

© 10
o det(Ty,’) = ][ ei = 640.
i=1

e The solution vector is given by: x =[1,2,1,0,0,3,1,2,2,1]7.

By using the algorithm k-TRANSTRI-II, we obtain the same solution vector.

Example 4.2. Solve the k-tridiagonal linear system

0 0 I
0 i)
-1 T3
Ty
Ts
Te
Z7
zs
Z9

cooro
cCoMmOoOOocOoOwo oo
|
iR
o
lloccorococoo

wooOoOwooOOoOoO
|
cCovouUe ok

OO O OO NO O OoON
I
—
O OO0 HOOO
SO OO UTO OO NOO

o O o o
OO O WwWo oo
WO OO wooo
OO WO OO OO
o

T10

Solution: Here, we have
n=10k=4a=[1,-1,2,4,1,3],d=[2,1,-1,3,1,3,5,3, 1, 3],
b=1[2,-1,3,2,1,3],andf=[4,2,0,13,6,5,0,9,0,6].
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The numeric algorithm k-TRANSTRI-I fails to solve the linear system (4.1), since eg = 0.
Applying the k-TRANSTRI-II algorithm, gives:

5

t—1) —11 1
t 7 5 73

2,t,5,3,—1,3].

@ 10
o det(Ty,") = (I] €i)t=0 = (66 *xt — 66);—0 = —66.

=1
e The solution vector is given by:
X =[1,1,0,3,2,—-1,0,1,2,3]T.

Conclusions

In this paper, we derived new algorithms for solving k-tridiagonal linear systems. The
computational cost of the algorithms is given. A MAPLE procedure based on these algorithms
is presented. Finally, some examples are given for the sake of illustration.
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