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Abstract
Conventionally the performance of computed tomography (CT) reconstruction algorithms is
assessed by a voxel-to-voxel comparison between the object and the reconstructed volume,
often using digital phantoms. However the real aim in the CT imaging community is not to
develop a reconstruction algorithm to obtain the best-looking images, but one that allows us to
extract the relevant information to a desired accuracy. Here, through various case studies, we
quantify features of interest for the test object and use these as measures of the efficacy of the
reconstructions. Where applicable, we compare the assessment technique against commonly
used metrics to measure the quality of a reconstructed solution, and find that in most cases the
popular metrics have no relation to the accuracy of the features we extract from a
reconstruction. The assessment technique we demonstrate, which we refer to as physical
quantification, is used to determine the shape, contacts and size of beads for a test dataset made
available via the SophiaBeads Dataset Project. Using this image analysis approach a number of
widely used reconstruction methods are evaluated. Our work shows that it is important to
choose the optimal reconstruction strategy based on the features you want to quantify from the
scan. For example, in our case we found that the shape of the beads could be measured using
TV regularization with eight times fewer projections than the other methods, or that
reconstructions obtained via many but noisy projections yield as accurate results as those
obtained via less noisy but fewer projections.

Supplementary material for this article is available online

Keywords: computed tomography, reconstruction methods, image processing and segmentation,
iterative reconstruction
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1. Introduction

As the name suggests, computed tomography (CT) is reli-
ant on reconstruction algorithms to compute a faithful image
of the object. Today the vast majority of applications where
x-ray CT is employed (such as in medical, laboratory, security
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or synchrotron settings) the images are reconstructed using
filtered back-projection algorithms. In principle there are a
large number of iterative reconstruction (IR) methods that
could be used to achieve better reconstructions in specific cir-
cumstances, for example in a dynamic or limited angle exper-
imental setup, or in electron tomography where the collec-
ted data is often noisy and has missing wedge of projection
angles, one can obtain quantitative results with IR methods
coupled with appropriate regularization. However it is diffi-
cult to know which method is best suited for a specific ima-
ging problem. Indeed it is not even clear how to quantify the
effectiveness of a particular method to reconstruct a circular
scan cone beam CT data (typically in a laboratory, dental or
industry CT system). For many, a high quality reconstruction
means a noiseless image with clear contrast, a solution that
satisfies a ‘best trade-off’ in convergence, and is close to the
approximate, but robust and widely-used, Feldkamp–Davis–
Kress (FDK) filtered back-projection algorithm [1]. Accur-
acy or quality metrics in image processing (signal-to-noise,
contrast-to-noise) and in numerical analysis (l2-norm error in
the residual or consecutive iterations) are commonly used to
assess the quality of reconstructed images and thus the suitab-
ility of the iterative methods. However, these are poor indicat-
ors of image quality since an iterative reconstructed solution
would have spatially-dependent noise, and resolution depend-
ent on image contrast [2].

In addition, FDK and IR methods produce different arte-
facts (artificial features that do not correspond to a physical
feature of the object [3]) in a reconstructed image, and thus
comparing these solutions with each other may not offer a fair
comparison. As argued in [4], the assessment of image qual-
ity is challenged by these traditional techniques, and an estab-
lished measure of merit for evaluating the quality of recon-
struction; independent of the noise and the contrast, or its
similarity to an approximate FDK solution, is necessary. An
alternative, task-based method is introduced in [4] however
this is designed for clinical studies, whereas our aim here is to
establish a more general measure of quality for tomographic
imaging.

The real aim in the CT imaging community is not to develop
a reconstruction algorithm to obtain the best-looking images,
but one that allows us to extract the relevant information from
a reconstruction to a desired accuracy. The topic of phys-
ical accuracy in a tomographic reconstruction is often over-
looked. It is demonstrated, to some degree, in studies [5–7],
where the physical information about the object is known and
is employed to assess an image reconstruction or segmenta-
tion method. However none of the cited work makes tomo-
graphic data available to test any other algorithms or validate
their results.

In this paper, we examine the strategy of extracting phys-
ical information from a reconstructed volume in order to evalu-
ate its quality, and thus the suitability of reconstruction meth-
ods. We suggest a series of appropriate physical assessment
techniques, which we refer to as ‘physical quantification’. We
note that these assessment techniques are not universal, but

specific to the object scanned. However the idea of extract-
ing physical information is still applicable, and should be
considered as a valid option to assess the efficacy of tomo-
graphic reconstruction methods. In this paper, we define phys-
ical quantification techniques for a specific set of CT data,
where some of the characteristics of the scanned object are
known. This data, collected for the purpose of developing
and testing image reconstruction techniques, is summarised
briefly here in section 2 having been first introduced in [8].
Similar strategies are often used in medical, geophysical and
non-destructive material studies to build or verify a physical
model. Numerous examples are given in [9–11], which exper-
iment with the idea of using features in a CT reconstruc-
tion to extract information relevant to the study. In the same
spirit, we consider four problems to examine the use of phys-
ical quantification techniques, and how the results could differ
from traditional ways of assessing the suitability and perform-
ance of reconstruction methods. These are typical problems in
the imaging community, and are included to offer perspect-
ives relevant to both mathematicians and experimental sci-
entists working in the field. The results of these case studies
are presented in section 5, and their brief descriptions are as
follows.

The first study compares three important types of recon-
struction methods. These are the filtered back projection
(FDK, an approximate direct method); the conjugate gradient
least squares (CGLS, an iterative method with no explicit prior
information) [12], and the total variation image reconstruction
(henceforth TV Prior, an iterative method with strong prior
information) [13]. The study focuses on making fair compar-
isons of these methods while physically quantifying the accur-
acy of the reconstructed results.

The second study looks at the convergence of CGLS in the
absence of prior information, and highlights how the conclu-
sions we can draw from the traditional and our technique of
assessing convergence may differ.

The third study looks at the effect of varying the quality of
the data acquired (this could be the exposure or dose) on the
quality of reconstructed solutions. This involves studying the
affect of increased noise as the amount of exposure (or dose)
is reduced, posing the question as to whether there are any
advantages to higher exposure scans.

The final study compares novel algorithms against more
standard segmentation methods, in which we explore the idea
of simultaneously reconstructing and segmenting images with
the means of a 2-step discrete-CGLS algorithm (DCGLS,
our modification to the discrete algebraic reconstruction tech-
nique (DART) algorithm) [14]. We compare a variation of
the level set evolution formulation (the distance regular-
ized level set evolution or DRLSE) [15], here adapted as
a segmentation method, with simpler techniques such as
basic, Otsu’s [16] and locally adaptive [17] thresholding
methods.

We finish this paper with more discussions and further
analysis on the first case study along with some concluding
remarks.
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2. Establishing a reference CT dataset

2.1. Description of the test data

The SophiaBeads Dataset Project [18] is a collection of cone-
beam x-ray CT data sets where the number of projections
are varied while the total photon count (or the total exposure
time) per acquired data set is kept constant [8]. These data sets
enable a wide range of algorithm comparisons and inform-
ation content optimizations to be examined. They are also
suitable for testing segmentation methods since the sample
comprises just two phases (glass and air). The project also
contains scripts to read and pre-process the data prior to
reconstruction, [19], which are essential in order to use the
data set.

The data sets are available to download individually, with
the largest one containing 2048 projections. The number of
projections is reduced by a factor of 2 for the subsequent data
sets, with the smallest one containing 64 projections. For the
case studies in section 5, we made use of all the data sets
available.

2.2. Scanner and sample details

The SophiaBeads data sets were collected using the 320/225
kVNikon XTEKBay [20] located at the HenryMoseley X-ray
Imaging Facility, the University of Manchester.

The scanner consists of a cone-beam microfocus x-ray
source that projects polychromatic x-rays onto a 2000× 2000
pixel, 16-bit, flat detector panel. The optimal window size
for the SophiaBeads reconstructions is 1564× 1564, which
was determined prior to the data acquisition, see [19]. The
data sets were collected using the stop/start acquisition tech-
nique to reduce angular blurring. The source settings were
70 kV, 210 µA with a 0.25 mm copper filter attached to
the front of the source to reduce any possible beam harden-
ing artefacts. Both the source and the geometry settings were
kept the same across all collected data. Annotated photo-
graphs of the setup and the mount are given in supple-
mentary material appendix C (figure C3) (available online at
stacks.iop.org/MST/32/075404/mmedia).

The beadpack sample comprised a 25mm diameter (20mm
internal diameter) plastic tube, filled with homogeneous
Soda-Lime Glass (SiO2–Na2O) beads5 in the size range
2.3–2.6 mm, with a mean value of 2.5 mm. The beads in the
plastic tube are packed tightly and do not move during data
acquisition.

A pack of glass beads were chosen because their simple
morphology lends itself to analysis yet is representat-
ive of many physical problems in non-destructive testing,
such as a porous media [21–23] and particles undergoing
granular flow [24, 25]. Glass was preferred to metal in
order to reduce any possible beam hardening effects (glass
provides good contrast to air while not as attenuating as
metal).

5 Lead-free Soda-Lime glass beads distributed by BioSpec Products, Inc. PO
Box 788, Bartlesville, OK 74005, USA, www.biospec.com.

3. Quantification strategies

3.1. Physical measures of the bead pack data

Our motivation for using the SophiaBeads data sets in par-
ticular is that the main features of the sample are well char-
acterised: We know the sizes of the beads so we can physic-
ally quantify the quality of reconstructions. In section 5 where
we solve typical questions in imaging, we quantify our results
using physical measures, which we define below:

(a) Shape of the beads—Shape3D or Shape2D: this quanti-
fies how close (in shape) a reconstructed bead is to a per-
fect sphere. This is defined by the ratio of the surface area
of the sphere6 to the surface area of the reconstructed bead.
Similarly in 2D, this is given by the ratio of the area of the
disk6 to the area of the bead.

(b) Aspect ratio of the beads—AspectRatio3D or AspectRa-
tio2D: The ratio of the smallest and the largest (ortho-
gonal) width of the bead in 2D (circle) and 3D (sphere).

(c) Sphericity of the beads: The percentage of the recon-
structed bead that fits to a perfect sphere, similar to
Shape3D.

Such measures are often used to quantify particle shapes
with the shape and aspect ratio functions available within
the image-visualization and analysis software, Avizo Fire
(versions 7–9) [26]. The sphericity measure is not native to
Avizo and we implemented the measure independently, prior
to the quantification stage. The sphericity percentage is defined
by

Sphericity= 100
π1/3(6V)2/3

S
, (1)

where V is the volume and S is the surface area of a bead
[27, 28].

Unfortunately the actual beads imaged are neither monod-
isperse, nor perfectly spherical. This means that we have no
unequivocal perfect physical measure to assess the reconstruc-
ted bead shapes. In order to establish a physical reference that
is representative of the sample, we evaluated the mean and the
standard deviation of the physical measures for the full 2048-
projection FDK reconstruction (size: 1564× 1564× 2000).
These reference values, given in table 1, are based on 500
reconstructed and segmented beads, and are thus repres-
entative of the sample characteristics. For the planar (2D)
quantification measures, we used the central horizontal slice
(i.e. Slice 1000; size: 1564× 1564) to obtain the reference val-
ues. A summary of this process is explained in supplementary
material appendix C, and in greater detail in [29].

Although not employed here, one can also use the volume
and the Gaussian or mean curvature of individual beads as well
as the contact between two identical spheres to determine the
accuracy of a reconstruction. These were not used as quanti-
fication measures since they were employed in the process of

6The sphere (disk in 2D) is approximated based on the largest height or width
of the reconstructed bead.
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Table 1. Listing of the idealized ground truth of perfectly spherical beads and the reference values for the given physical measures obtained
from the full 2048-projection FDK reconstruction.

Reference physical measures

Quantification measure Idealized ground truth Minimum Maximum Mean Standard deviation

Shape3D 1 1.0832 1.9776 1.3274 0.00226
Shape2D 1 1.1248 2.3614 1.2143 0.00750
AspectRatio3D 1 0.7142 0.9719 0.9112 0.00172
AspectRatio2D 1 0.7948 0.9937 0.9319 0.00320
Sphericity 100 79.177 97.372 87.164 0.0132

separating and filtering the reconstructed beads in Avizo [29].
It should be noted that such physical measures could have been
calculated just as easily using open-source image analysis soft-
ware such as Blob3D [30], Fiji/ImageJ [31], Drishti [32] or
VTK [33].

3.2. Traditional measures of reconstructed image quality

In addition to physical measures, we include traditional, pixel-
based image quality assessment techniques (where applic-
able). These are standard measures used in mathematics to
show the grey value differences between two images (the L2

error (in the image) relative to the ground truth image (the
object), E2norm), or to observe changes in consecutive solutions
or in estimated and measured data, at each iteration (iterat-
ive error relative to the current iterate, Eiter and the residual
error relative to the measured data, Eres, respectively). These
are defined by

E2norm =
∥x∗ − x∥2
∥x∗∥2

, (2)

Eiter =
∥xk− xk−1∥2

∥xk∥2
, (3)

Eres =
∥b− bk∥2
∥b∥2

, (4)

where ∥ · ∥2 denotes the (Euclidean) 2-norm, x∗ the ground
truth image; b the log of the measured data, and bk the
estimated data by the kth iterated solution xk, defined by
bk = Axk. In cases where equation (2) is used, the 2048-
projection reconstruction (of size 1564× 1564× 500) is taken
as the ‘ground truth image’. We also consider the contrast-to-
noise ratio (CNR) as an image quality assessment technique
[34] (in dB), defined by

CNR= 10log10
µF−µB√
σ2
F+σ2

B

, (5)

where µF, µB are the mean grey values; σF and σB standard
deviation in grey values in selected regions of foreground (F)
and background (B). These regions are shown with blue rect-
angles in figure 1.

4. Reconstruction algorithms

4.1. Implementation notes

The IR methods considered in the case studies are implemen-
ted inMATLAB 2014b, with the forward- and back-projectors
written in C [19]. Readers will note that the CGLS is used
in all subsections. Other methods used in the case studies are
FDK with a ramp filter (results obtained using the in-house
software, CTPro); a formulation of total variation as a regular-
izer with a maximum a posteriori probability (MAP) estim-
ate (TV Prior), and our modified version of the DART with
segmentation methods such as the basic thresholding, Otsu’s
thresholding, locally adaptive thresholding and a variation of
the level set evolution methods (DRLSE). All formulation and
algorithm implementation details are summarised in supple-
mentary material appendix A. All computations were run on
machines with 3.10 GHz, 64-bit 16-core CPU (2x 8-core Intel
Xeon E5-2687 W) using a single GPU with 12 GB RAM
(Nvidia Quadro K6000).

4.2. Presentation of results

For the 3D results, we reconstruct the central subvolume of
size 1564× 1564× 500, and display the images of the cent-
ral horizontal slice, (i.e. the Slice 1000). We focus on a cent-
ral window of size 440 px× 440 px; smaller regions of size
100 px× 100 px of a bead in the centre, or 130 px× 130 px
near the edge. These are shown in figure 1, henceforth
referred to as ROI1, ROI2 and ROI3 throughout section 5,
respectively.

The quantification plots are based on mean physical quan-
tification values of 25 reconstructed beads. Details are given
in the supplementary material appendix C.

5. Case studies

5.1. Comparing reconstruction methods using physical
measures

Traditionally the efficacy of a reconstruction method is
determined by voxel-to-voxel comparison. However in prac-
tice, the goal of a tomographic study is to extract physical
information from a reconstructed volume. Thus we will use a
physical quantification method to assess the suitability and the
efficacy of three inherently different, yet commonly used and

4
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Figure 1. 2D CGLS central slice reconstruction of 512-projection data (four frames), along with three regions of interest, namely, a central
window of the sample (ROI1; of size 440 px× 440 px or 704 µm× 704 µm), a bead near the centre (ROI2; size: 100 px× 100 px or
160 µm× 160 µm) and a bead near the edge (ROI3; size: 130 px× 130 px or 208 µm× 208 µm). The blue rectangular regions F and B,
both size 50 px× 50 px, are the foreground (in this case, inside a bead) and the background (a region outside the sample holder) selected for
the CNR estimations, respectively.

compared reconstruction methods. These methods are a popu-
lar approximate direct method with an implicit prior incorpor-
ated in a filter applied to the data (FDK); an iterative method
with no explicit7 prior information (CGLS), and an iterative
method with a strong prior (TV Prior).

As the methods considered in this case study are of differ-
ent types, the aim is to achieve comparable results as opposed
to the best solution from either reconstruction method. In addi-
tion, the iterative methods require the consideration for an
iteration cut-off point (which differs from data to data) and
especially in the case of TV Prior, an additional set of para-
meters to fine-tune in order to achieve conceivable reconstruc-
tions. In order to obtain comparable results and avoid any bias
towards a method, we performed parameter fine-tuning, as
well as determining the iteration cut-off point, based on the
512-projection dataset. We note that the iteration cut-off point
(i.e. the maximum number of iterations) is determined to be 12
iterations for CGLS, and 2000 iterations for TV Prior. Beyond
these points, both methods started to either stall (no change
above a certain threshold in the image domain) or diverge to
a noisier image (assessed based on line profiles in the image
domain). The difference in the maximum iteration numbers

7 An implicit prior information is provided for this method by the stopping
criterion, which often is Eiter or Eres. However in this paper, this is replaced
by a user-defined number of iterations in order to eliminate the bias on the
physical quantification.

can be attributed to the influence of the strong prior. Of course
running the TV Prior for 2000 iterations meant that the compu-
tation time increased drastically, with 2048-projection results
taking approximately 4 weeks; 1024-projection results taking
2 weeks, and so on. We also note that we have not sought to
accelerate the computations, but rather highlight the run times
in order to provide relative indicators of the computational
overhead associated with each method. The run time for each
result is included in the quantification plot. Also note that there
is no data fitting error for FDK as it is a direct inversionmethod
[1, 35]. The reconstructed results of ROI1 for selected data sets
are given in figure 2, followed by the quantification plot using
Shape3D as the physical measure in figure 3.

It is not surprising that the TV Prior does better than the
others for all reconstructions; the TV Prior takes into account
the sparsity in the gradient reconstructions, enhancing the
edges of the beads. Since the gradient image of SophiaBeads
reconstructions is very sparse, the TV Prior works really well.
The striking observation here is how long it takes to obtain
a high quality result using this method. However, this is also
expected since amore sophisticated formulation requires more
computation—and in the case of TV Prior, this means mul-
tiple computations of the gradient and many iterations until a
level of convergence is achieved. In our case, the numerical
convergence for 1024- and 2048-projection data sets stalled,
and the method was run until the limit of 2000 iterations
was reached. The results did not show further improvements,
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Figure 2. Central window reconstructions of Slice 1000 for (top to bottom) 64-, 256- and 1024-projection data sets, obtained using (left to
right) FDK, CGLS and TV Prior.

Figure 3. The results of the Shape3D analysis applied to the
reconstructed volumes. The graph also includes the computational
run times for each reconstruction, annotated above each result in
matching colours.

which is evident both in the Shape3D quantification plot and
the reconstructed results.

TV Prior reaches the reference value threshold with
256-projection data set, although taking 3 days to get there.
CGLS in comparison reaches the threshold in 10 h but with
the highest number of projections. FDK never reaches the
same level of accuracy as the other iterative methods (at 2048-
projection data set, FDK solution returns Shape3D value of
1.61, while CGLS gives 1.33 and TV Prior 1.13).

An interesting conclusion we can draw from the Shape3D
quantification is that one can achieve the quality of the
2048-projection FDK result with a 512-projection, or even a
256-projection CGLS result. This could be particularly
important in medical imaging where the dose required to
record certain features is critical, or when imaging dynamic
events where the acquisition speed is important. Using a
simple prior, the CGLS result can be further improved upon
with a small increase to the run time, thus the method can be
seen as a good replacement for FDK in the case of a low-dose
or few-projections problem. Conversely, when we collect data
withmany projections (e.g. 2048-projection), we obtain recon-
structions in 10 min using FDK, which would otherwise take
hours with CGLS and weeks with TV Prior.

5.2. Using physical measures to study the convergence
of methods

In numerical analysis, typically a small test matrix (often with
special properties or obtained via simulations) is used and the
iterated solutions are compared to a true solution (a prede-
termined phantom) to study the behaviour of a method. The
results however accurate and experiments representative of
the physical case, do not always reflect what happens when
applied to real world problems. Here, we have real CT data
sets of varying projection numbers and a number of iterative
methods, meaning we have the opportunity to study the beha-
viour of an iterative method with data obtained in a practical
setting, using physical information we have of the beads.

6
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Figure 4. Reconstructions of the bead near the centre (ROI2) at CGLS iterations 5 to 45 (a), and a line profile through the horizontal centre
plotted at each iteration for 64-, 128- and 256-projection data sets (b).

We choose CGLS for this study as it is a fast iterat-
ive method where one 3D iteration (x ∈ R1564×1564×500) of
64-projection data set takes (on average) 90 s; 128-projection
180 s; 256-projection 360 s, and so on. Note that here we
exclude the 2048-projection data set due to the excessive run
time and limited contribution to the discussion (the results are
similar to those of 1024-projection data set).

Two questions are considered in this study: How does
CGLS converge in the case of real CT data, and how would
this behaviour change as the amount of data is reduced and
thus becomes insufficient?

We performed 50 iterations of CGLS, saving the recon-
structed volume every 5th iteration to be analysed using a
physical measure, here chosen to be AspectRatio3D. Also
evaluated at each iteration, k, are Eiter and Eres (equations (3)
and (4)), where the starting point, xk = 0 is a vector of zeros
(an all-black image). We also evaluate CNR (equation (5))

for every 5th iteration. The following figures show the bead
near the centre (ROI2) reconstructions for 64-, 128- and
256-projection data sets at iterations 5 to 45 (figure 4(a)); a
line profile of through the (horizontal) centre of ROI2 every
5th iteration for each dataset (figure 4(b)), the linear plots of
the pixel-based error measures (figure 5), CNR plot (figure 6)
and the linear plot of AspectRatio3D values (figure 7).

It is difficult to draw any conclusions from the tradi-
tional error measures in figure 5. The relative iterative error
plot in figure 5(a) indicates that as the iteration number, k,
increases, the changes between reconstructions at consecut-
ive iterations decrease. However, this does not mean that the
method converges to a ‘better’ solution8. This simply means
that the difference between the current and previous solution

8 Better in the sense that the reconstructed image has less noise or the beads
are accurately segmentable.
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Figure 5. The relative iterative error, Eiter (a), and the relative residual error, Eres (b), for the CGLS reconstructions based on 64- to
1024-projection data sets.

Figure 6. The CNR plot (in dB) for every 5th CGLS reconstruction based on 64- to 1024-projection data sets.

is decreasing, whereas at this point we would expect to have a
noisier image at iteration 50. The relative residual error plot in
figure 5(b), shows that as the iterations continue, the difference
between the estimated (b) and predicted (bk) data decreases
initially, but later increases rapidly, at different rates. The min-
imum value of this error measure for all data sets is at iteration
4, suggesting that the ‘best’ approximation to a sensible solu-
tion is achieved at this point. However, the visual inspection of
the reconstructed solutions at iteration 5 suggests the beads are
still too blurry for a computer to automatically segment, and
in the few-projection case, challenging even for the advanced
visual perception of a human being. This shows how inaccur-
ate standard practices can be when working with real data sets
to extract physical information.

The CNR plot (figure 6) shows the contrast change with
respect to noise as iteration number increases. Observing the
plot, we see a clear divide between 1024- and 512-projection
and 128- and 64-projection results in the sense that the pairs

follow similar trends: The former pair show a quick recov-
ery at iteration 15 before steadily decreasing (though at dif-
fering rates). The latter trend shows a steady decline from the
beginning until iteration 20; a slight or no change in the CNR
results until iteration 35, before declining again until iteration
50. Only the 256-projection results show a steady, predictable
decrease throughout with a small recovery at iteration 35. The
difference in trends can be due to the combination of angu-
lar sampling frequency being more pronounced with 256- and
fewer projection data sets, and more noise being introduced
into the reconstruction by CGLS as we iterate further. There
are instances where CNR recovers slightly. For example the
CNR result for 64-projection at iteration 25 gets close to the
same level as that of 128-projection. Conversely, the 1024-
projection results lose contrast and stoop to the level of 512-
projection at iteration 20 (and lower onwards). Even more sur-
prising is that 1024-projection is overtaken by 256-projection
at iteration 30. All CNR results agree that the initial results for
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Figure 7. A linear plot of the physical quantification measure, AspectRatio3D. The quantification was performed for every 5th CGLS
iteration for 64- to 1024-projection data sets. The shaded region indicates the acceptable solutions in the sense that all reconstructed objects
within this space can be identified and segmented as beads, determined by the table 1 reference value for mean AspectRatio3D.

each data set (iteration 5) have the highest CNR, and as we iter-
ate further, the values decline towards the background noise.
However, a visual inspection of the first column in figure 4(a)
shows blurry beads for all data sets.

We note that in our experiments employing CNR as an
assessment technique, the sizes of regions chosen for the fore-
ground and the background had a large effect on the result-
ing CNR plot, and at times, revealing completely different
data trends. The difference was especially pronounced with
low projection data sets (256-projection and fewer). In addi-
tion, none of the plots reliably pointed at a number of itera-
tions where CGLS returned the ‘best’ results: they all agreed
that the initial iterated solution (iteration 5) had the highest
CNR, with the trend always decreasing for the remainder of
the plot (although in unpredictable manner in comparison to
one another). A future study could look into employing CNR
for the initial sets of iteration (iterations 1–20) and what they
reveal in challenging experimental setup (e.g. few-projection
problems).

Figure 7 on the other hand shows the iterated values
for which the reconstructed volumes resemble more defined
beads. The yellow rectangle with dashed edges show the area
for acceptable (i.e. accurately segmentable) AspectRatio3D
solutions. This is determined using the table 1 value for mean
AspectRatio3D (0.91 and above). The graph shows that the
reconstructions quickly converge to an acceptable solution but
later diverge. In the case of many-projections (512-projection
and above), the convergence happens very quickly and res-
ults are stable for a while, whereas in the case of insuf-
ficient data (128-projection and below), the convergence is
slower and results diverge shortly after, albeit at a slower speed
than 256-, 512- and 1024-projection data. The results for the
256-projectiona are interesting in that their quality is as good
as for the many-projection data sets, reaching the same level
of quality as the 512- and 1024-projection results in just 20
iterations (3 h 20 min runtime).

It is worth noting that in contrast to the error and CNR plots,
the AspectRatio3D analysis agrees with the visual inspection
that the solutions in the middle are acceptable solutions. In
addition the physical analysis agrees with the intuition that for
data sets with many projections, the iterated solutions become
more acceptable sooner. Meanwhile we observe a sudden dip
in the physical assessment as we iterate further, which is a clear
evidence of allowing for the noise to yield larger effects on the
reconstructed results.

5.3. The effect of varying the acquired dose on the quality
of reconstruction

Here, we attempt to answer an interesting question from an
experimental point of view: The noise is undoubtedly reduced
when we collect multiple instances (henceforth frames) of a
projection and average over the total number. The intuition
suggests reconstructions obtained via high-dose, fewer angle
data would yield more accurate results as opposed to data
with noisier projections taken more often. However, is it worth
collecting multiple frames at conservative dose (exposure or
photon count) in few-projection problems?

The acquisition plan of the SophiaBeads data sets as
described in [8] is reproduced in figure 8, where line B rep-
resents data sets taken with fewer and fewer single-frame pro-
jections (i.e. the photon count is directly proportional to the
number of projections, which is halved) whereas line A rep-
resents case where the number of projections decrease but the
number of photons is compensated for by increasing the num-
ber of frames per projection (i.e. the same photon count in the
data set as a whole). Line A data sets were released for the
purpose of comparing algorithms, whereas line B data sets are
not publicly available. However we can still obtain the line
B data sets from line A by downsampling appropriately. For
example, to obtain a 128-projection data set each projection
with a single frame (line B), we can take every 16th projection

9
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Figure 8. The tomographic acquisition plan for the beads pack data, reproduced following the description given in [8]. Line A here
indicates the data sets with reduced number of projections while the photon count is kept constant; line B the data sets with halved photon
count as the number of projections is decreased.

Figure 9. Reconstructions of the bead near the edge (ROI3) for all data set in line B (single frame, top row) and line A (multiple frames,
bottom row).

from the 2048-projection data (1 frame). In fact, we can obtain
a data set for any number of frames (i.e. dose) using the line A
data sets: if we wanted to obtain 64-projection data set with 4
frames, we would downsample the 512-projection by 8 (32/4).
In this respect it should be echoed here that this is possible
because the SophiaBeads projections are not taken continu-
ously but rather the rotation pauses to take one projection at a
time (a stop-start scan).

The reconstructions were obtained using the same numer-
ical set up as the previous case studies: by performing 12
CGLS iterations for each data set lying on lines A and B.
Figure 9 shows ROI3 on Slice 1000 of each reconstructed
volume.

The traditional image analysis technique is applicable here,
and we use the E2norm measure, taking the 2048 FDK result
as the ground truth image (denoted by x∗ in equation (2), see

figure 10). For the physical quantification measure, we cal-
culate the sphericity percentage of each solution in figure 11,
including the mean reference value for sphericity, which is
87.16% (from table 1).

We observe that the traditional and the physical quanti-
fication measures agree, both confirming that collecting mul-
tiple frames generally give better results (as expected due to
decrease in noise). However, when closely inspected, the trade
off is not as big as intuition might suggest. In fact, looking at
the trend of both lines A andB in the sphericity plot (figure 11),
at its largest gap (64-projection data), both lines only exhibit
4.6% difference in the sphericity of the beads. This difference
is reduced as the number of projections is increased. Study-
ing either of the plots, we can further deduce that collecting a
single-frame often gives results with highly comparable qual-
ity to multiple-frame data. This is observed in two locations.
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Figure 10. A log-linear plot of relative 2-norm error, E2norm, for all
data sets. Each reconstruction is compared to the 2048-projection
result, obtained using the same numerical setup.

Figure 11. Sphericity of the reconstructed beads plotted as the
number of projections increase. Mean reference physical value is
denoted by the purple line with cross markers.

First, compare the line A 512-projection (4 frames) and 1024-
projection (2 frames) results in either graphs: Here, the total
exposure is the same but the exposure-per-projection is dif-
ferent. However, the level of reconstruction quality at these
points is almost the same, meaning 2 frames of 1024 projec-
tions does not have any benefit over collecting 4 frames of
512. Secondly, observe the difference between line B 512-
projection (1 frame) and line A 256-projection (8 frames) res-
ults in the sphericity plot. The line B solution with a single-
frame gives a closer quantification value to the reference value
(≈6% difference in sphericity) than the line A solution with 8
frames (≈11% difference). So despite having 4 times as much
exposure-per-projection, the single-frame data set still gives a
better solution. This also suggests that the SophiaBeads data
sets were collected at too high an exposure level, reflecting
a conservative tendency of CT practitioners to over-count per
frame. A suggestion for future work could be looking at the
limitations of iterative schemes where the exposure is con-
ventionally deemed too short. Studying each line of sphericity

individually, we note that the lines follow the same trend: the
sphericity difference in line B data gets smaller as the number
of projections is increased; line A following the same trend.
We can attribute this to the effect of angular sampling: the
trend of lines A and B is a good indicator of the effect of angu-
lar sampling in that, the gain in increasing the sampling fre-
quency outweighs the gain that comes with higher exposure-
per-projection. Another suggestion for a future study could be
a comparison of the sphericity measure of individual beads
across a reconstructed volume as a way to map the vari-
ations of image quality within the same volume. With the
reduced exposure-per-projection coupled with fewer angles in
the data, a reconstructed bead in the centre could exhibit dif-
ferent sphericity to one near the edge.

5.4. Integrated model-based reconstruction and
segmentation—benchmarking implementations

The approach introduced in this paper can also be used to test
out a novel imaging method, and to benchmark against more
standard techniques to assess the accuracy and performance.
The idea implemented here is to use segmentation as part of
the reconstruction algorithm. Although fairly new in practice,
the idea was considered in a more theoretical sense in [36, 37].
This recently gained attention and is being applied in more
variations in the imaging community, namely to produce both
continuous images using a Bayesian framework [38] or dis-
crete images with a 2-step algorithm [14]. Also related is the
idea of simultaneously obtaining both reconstructed and seg-
mented image directly from the measured data [39], or using
prior information about the phases in the sample [40].

The implementation in this study was inspired by the
simple, 2-step discrete IR method detailed in [14], where a
number of simultaneous algebraic reconstruction technique
(SART) iterations are performed; the solution is segmented,
boundary elements are determined, and SART iterations are
continued for these boundary elements. Since the Sophia-
Beads sample only consists of homogeneous glass beads and
air, the data sets are suitable for this study, in which we
replace the SART method with CGLS (henceforth referred
to as discrete-CGLS or DCGLS). This modification results in
a large decrease in computational time. In [14], basic global
thresholding is used, which is a simple method that classi-
fies pixels in an image as ‘black’ (zero) or ‘white’ (above
a user-defined threshold). To benchmark this aspect of the
algorithm, we replace this step with other segmentation meth-
ods. Namely, the Otsu’s thresholding algorithm, locally adapt-
ive thresholding algorithm and the DRLSE method.

It is important to note that there were no parameter fine-
tuning tests done for these segmentation algorithms, except
for DRLSE. Of all the methods implemented, DRLSE was the
most unstable as the quality depended heavily on a number
of parameters. As it is outside the scope of this work, we do
not go into the details of DRLSE but instead refer the reader
to [15] for the derivation of the method (a summary is given
in supplementary material appendix B along with the imple-
mentation details of this and other segmentation methods).
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Figure 12. The central window of reconstructions for 64- to 512-projections data sets using (left to right) basic global thresholding (Basic),
Otsu’s thresholding (Otsu’s), locally adaptive thresholding (Adaptive) and the distance regularised level set method (DRLSE).

Figure 13. The log-linear plot of Shape2D quantification values for
all segmentation methods for each data set, and of the physical
reference value denoted by a purple dashed line with cross markers.

Initially five CGLS iterations were performed and the
reconstruction at the 5th iteration was used as the start-
ing point for DCGLS. We chose a small number of ini-
tial iterations to challenge the segmentation methods, which
were shown to return acceptable solutions for 256-projection
data set and above (see section 5.2). The DCGLS algorithm
was applied to Slice 1000 to reduce the computation
time but the implementations are easily expendable to 3D
volumes. The ROI1 of selected reconstructions are shown in
figure 12.

Traditional image analysis techniques are not feasible in
this study since there is no segmented ground truth. We use
Shape2D here as the physical quantification measure, applied
to the entire slice, see figure 13. The reference value is the
mean Shape2D value given in table 1.

As seen in both the reconstructions and the Shape2D
quantification, DCGLS with the Level Set (DRLSE) at
64-projection returns relatively poor results. This may be due
to the initial reconstructed volume (5 iterations of CGLS,
recall the first column in figure 4) is not iterated long enough
for the DRLSE to return a successful reconstruction. It could
also be due to the DRLSE parameters being too strict for
the few-projection case. Interestingly, for the same starting
point, the most basic segmentation method returns better res-
ults, closely followed by the locally adaptive method. As the
number of projections increase, the level set method takes over
in quality, and appears to perform better than others.

Basic and level set methods reach a similar level of qual-
ity as the reference value at 256-projection with the locally
adaptive method passing the reference value threshold (Basic:
1.24; locally adaptive: 1.20 and level set: 1.25), while Otsu’s
thresholding reaches this level with the 512-projection recon-
struction. However, despite showing comparable Shape2D
results to the basic and locally adaptive methods, the level
set method produces more accurate reconstructions. This con-
clusion is drawn from the observation that the level set seg-
mentations show the beads as almost touching or completely
separate, which is more accurate than what the others pro-
duce (beads reconstructed with other methods showmerged or
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sintered beads for all cases, even at 2048-projection).We could
of course have a stricter threshold value for the basic threshold-
ing method, however this evidently means more unstable res-
ults for the data sets with fewer projections.

6. Discussion

The analysis approach presented here is applicable to various
scenarios in imaging. As an example of this, as well as utiliz-
ing the SophiaBeads data sets, we have tried to answer typical
questions that are of interest both to the mathematicians and
the experimental scientists deploying CT. In this section, we
consider the implications for each problem, as well as further
analysis into comparison of algorithms.

The first case study showed that the iterative methods
clearly gave better quality reconstructions. The prior inform-
ation enhances the image quality and thus gives the best out-
put measures. However, the results also highlighted an aspect
often ignored, which is the computational time for reconstruc-
tions. As expected, more sophisticated algorithms take longer
to reconstruct an image, and so there is a trade-off between
computation time and quality. Our approach defines when the
simpler methods are good enough.

The second problem involved studying the convergence
behaviour through the use of the physical measures, and com-
pared this to the standard practice of convergence analysis.
Results obtained via the standard error norms did not yield
conclusive results, demonstrating that the standard conver-
gence analysis may be appropriate for simulations where a
ground truth is predetermined but they are not applicable
in practical cases. Studying the physical characteristics of a
reconstructed volume to determine the convergence behaviour
returns more trustworthy results, which can be verified by
visual inspection.

The third study questioned the benefit of collecting data at
constant exposure (total dose or photon count) as opposed to
varying exposure (decreasing photon count). The results high-
lighted a conventional practice in CT, which is that even data
sets with the least amount of information is collected with a
‘comfortable’ exposure level in order to collect the ‘best pro-
jections’. For this reason collecting at high exposure did not
have much benefit over collecting at lower exposure. An inter-
esting study would be to repeat this assessment with data sets
collected in more challenging (lower exposure) settings.

The final study looked at benchmarking an algoirthm integ-
rating the reconstruction and segmentation steps, namely the
2-step algorithm, DCGLS. The results highlighted the import-
ance of choosing parameters, which determined how unstable
a method can be (especially in cases with few-projection data)
and the accuracy of the reconstructed solutions.

Since the SophiaBeads data sets were collected specifically
for comparing reconstruction algorithms, we include further
analysis into the comparison presented in section 5.1.

6.1. Exploring the limits of reconstruction algorithms

The SophiaBeads data sets are collected with varying number
of projections while keeping the total dose (or photon count)

Figure 14. A log–log plot of the Shape3D results against the
computational run time (in seconds) for each SophiaBeads data
reconstruction.

for each data constant. This was done to ensure fair compar-
ison in the way that no other artefacts are introduced in the data
as not to convolute the solution and therefore influence our
conclusions. In section 5.1 where we compare three types of
reconstruction algorithms, the resulting reconstructions were
tested against a shape criterion, in this case Shape3D, to
determine how close the reconstructed volumes were to a ‘per-
fect solution’. Another aspect that could be tested here is the
time it takes to obtain these reconstructions. Figure 3 has been
annotated to include the reconstruction times, but these can
also be presented in a graph in a similar manner. The present-
ation of results, given in figure 14, highlights the amount of
time it takes to obtain a reconstruction, and raises important
questions such as when does it make sense to implement more
sophisticated methods and thus run longer reconstructions?
Because it will take longer to reconstruct an image if there is
more information, when does it become unnecessary to collect
more information?

It is clear from figure 14 that if we were to lower the dose,
we can achieve improved results collecting 128 projections
and reconstructing using TV Prior (in comparison to FDK).
A similar degree of quality can be achieved with 512 pro-
jections, using CGLS, which would lead to a runtime that is
approximately te times shorter than to obtain the TVPrior 128-
projection reconstruction.

It is important to remember that the CGLS reconstruction
results may be improved with simple or model-based regular-
ization, and that the TV Prior reconstruction run time can be
reduced by fine-tuning the parameters to avoid stalling in con-
vergence. We observed stalling occurred more often with lar-
ger amounts of data, but in order to ensure that the TV Prior
results were comparable with one another, we have used the
same parameters for all TV Prior reconstructions. Similarly
with CGLS, we chose not to include regularization in order
to make a comparison between an iterative method with no
prior information and one with model-based prior information
(CGLS vs TV Prior).
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7. Conclusions

A 3D reconstruction is used in applications where feature
quantification plays a major role in e.g. quality control of a
commercial product; testing and developing composite mater-
ials, or for tailoring a patient’s treatments for a specificmedical
condition. Image analysis is crucial in assessing the suitability
of a reconstruction method as well as the accuracy of informa-
tion extracted from a reconstructed solution. Traditional tech-
niques in image analysis (signal-to-noise ratio, L2 norm, etc)
were not adequate or able to give unbiased conclusions, and
an established measure of merit was needed.

In this paper we introduced the idea of analysing a recon-
structed solution using its characteristics such as shape, size
and texture, which we referred to as physical quantifications.
We defined a series of appropriate physical quantification
measures to be applied to a CT data of a pack of glass beads,
made available via the SophiaBeads Dataset Project, where the
characteristics of the beads were known.

We exemplified the uses of physical quantification tech-
niques through a number of case studies. These were chosen
to be typical problems in CT in order to offer perspectives of
mathematicians and experimentalists. Each study contained an
example of physical characteristics being analysed, and a tra-
ditional analysis method is also included (where appropriate).
This was done to highlight any possible discrepancies in con-
clusions drawn from both physical and traditional quantifica-
tion techniques.

Our results demonstrate that physical quantification tech-
niques can be applied to a wide range of problems, and offer
clear indications as to the efficacy of a reconstruction strategy.

The results also showed that the introduced techniques
allowed further analysis into the comparison of methods and
analysis of various levels of dose in the acquisition. With
these techniques we were able to conclude that the estab-
lished beads pack data were collected at a conservative expos-
ure level, which is the standard practice amongst the scientific
experimentalists working in CT. A future task could be to
collect a reference data set in more challenging settings, for
example, when the projection view is severely limited or when
the exposure-per-projection is decreased.

In addition, the results underlined the difference in com-
putation times for a reconstruction, i.e. that the more sophist-
icated an algorithm gets, the longer the reconstruction takes.
Another future task can be to limit the reconstruction time
to assess the quality of results, with the goal of developing
a sophisticated algorithm (correct forward model, appropri-
ate stopping criterion, explicit prior and sensible optimiza-
tion solver) that returns a reconstruction in relatively shorter
amounts of time.
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