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Abstract
We present a graphical user interface (GUI) for planning the sample size needed to reach a
specified target uncertainty in a Bayesian type A uncertainty evaluation of normal or Poisson
distributed data. To this end we build on a criterion previously introduced by Martin and Elster
(2020 Stat. Methods Appl. 1–21) and called the variation of the posterior variance criterion. This
criterion includes, and extends, standard Bayesian sample size planning procedures. Guidance is
provided for the elicitation of the required prior knowledge in a way that makes the approach
easily accessible for metrologists. The GUI also includes a menu that performs the Bayesian
inference after the experiment has been carried out.

Keywords: sample size planning, experimental design, type a uncertainty, Bayesian statistics

1. Introduction

When planning a measurement series a natural question that
arises is how many data need to be acquired. Taking too many
samples can be costly or time-consuming, while taking too
few can make the result of the measurement unusable. The
quest for the appropriate sample size is known as sample size
determination (SSD). In metrology, SSD can be relevant when
planning the sample size needed to meet a specified target
uncertainty in a type A (standard) uncertainty evaluation, that
is an uncertainty evaluation based on observations [2].

SSD is part of experimental design, and usually performed
before any measurements are taken. SSD utilizes prior know-
ledge about the experiment such as the expected dispersion of
the data. While also frequentist SSD makes, often implicitly,
use of prior knowledge [3, 4] the language of Bayesian statist-
ics is a consistent approach for dealing with such knowledge
[5–9], but diving into its depthsmight be deterrent for someone
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whose only goal is to find a sample size. To help bridging
this gap this article presents an open source software package,
written in Python and equipped with a graphical user interface
(GUI), to do sample size planning based on a Bayesian cri-
terion. The GUI also allows the final standard and expanded
uncertainty to be evaluated once the data have been recorded.
Explicit guidance is given to elicit the prior knowledge needed
for applying the SSD.

The GUI is tailored for the following task: we want to
determine a suitable length n of a planned measurement series
x1, . . . ,xn, where we assume that the measurements satisfy the
following conditions, in order to keep the framework and inter-
face as accessible and straightforward as possible:

• The measurand is a scalar.
• The measurements are statistically independent.
• The measurements follow a normal or Poisson distribution.

The first of these assumptions is needed for the sample
size criterion we introduce in (2) below, whereas the second
and third assumption are taken to keep the GUI simple. To
demonstrate the usage of our method we will use through-
out this article a fictional experiment of determining the mean
temperature in some environment, say a laboratory, within
a specified target uncertainty, so that x1, . . . ,xn represent
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Figure 1. Overview over different phases of the sample size planning, the experiment and the subsequent inference. Stages treated in this
article are blue. The actual sample size planning is treated in sections 2 and 3. Section 4 describes the evaluation of measurement results.

measurements of the temperature1 at n different physical loc-
ations in this laboratory (measurements at the same location
are typically easy to sample in large numbers and a SSD is
therefore less relevant). The GUI is devoted to any measure-
ments series of scalar quantities (e.g. mass or length) where
the above applies, which is a quite common assumption (see
the examples in the GUM [2]).

Wewill follow the idea [10–14] to design n such that we can
specify the measurement result with a sufficient target uncer-
tainty quoted ε in the GUI. More precisely we want to achieve
that

u< ε, (1)

where u is the Bayesian type A (standard) uncertainty for
our measurement result2. A condition such as (1) could for
instance become quite relevant in cases where u is the dom-
inant source in a combined uncertainty. Unfortunately, u will
depend on the measured values, whereas sample size planning
is done before the experiment is performed. A way to over-
come this cyclic dependency is to use prior knowledge, math-
ematically encoded in the language of Bayesian statistics [15].
A substitute for (1) in this spirit, proposed by the authors in
[1], is a criterion called the variation of the posterior variance
criterion (VPVC), whose formula is given by

u2 + k ·∆u2 < ε2. (2)

The precise definitions and formulas for the objects in (2) will
not really matter for the purpose of this article and we refer to
[1] for the statistical details. In a nutshell, u2 is the expected
squared Bayesian type A standard uncertainty, the object∆u2

its expected variation, both based on the prior knowledge, and

1 To unify the notation in this article and make it consistent with the one on
the GUI, we here use x as a letter to represent the measured temperature values
in contrast to the usual convention of calling the temperature ‘T’.
2 To be mathematically precise: u denotes the standard deviation of the pos-
terior distribution of the measurand, see [1] or appendix A.3.

the expansion factor k⩾ 0 is a parameter to tune the chances
that after the experiment (1) will be satisfied. For k= 0 the
criterion in (2) reduces to the standard Bayesian SSD criterion
known in the literature as the average of the posterior variance
criterion (APVC) [10–12].

This article presents a software package, written in Python
[16], that spares the user most of the statistical details, and
thereby provides an easy access to a topic that appears to
be rather seldom treated in the metrology literature. In addi-
tion, the package comes with an implementation of the VPVC
sample size planning and a GUI that can be used without any
foreknowledge of Python.

The structure of this article together with the typical flow of
sample size planning, experiment and subsequent inference is
sketched in figure 1. Section 2 explains how prior knowledge
and the desired target uncertainty, namely ε in (1) and (2),
can be recorded in the sample size GUI. Furthermore, expli-
cit guidance is provided for eliciting the required prior know-
ledge. Section 3 then describes how the according sample size
can be gained from this information. Section 4 finally explains
how a Bayesian estimate of the measurand together with its
uncertainty can be obtained, after the experiment has been per-
formed, using the GUI.

A summarized Howto for using the GUI and a detailed
description of the output of the included inference menu
is included in appendices A.1 and A.4. Moreover, an addi-
tional example with Poisson distributed data is also included
in appendix A.2. For the mathematically inclined reader
some mathematical details behind the Bayesian inference are
sketched in appendix A.3.

2. Preparation

Subsequent to following the instructions in the README, the
GUI can be launched by entering python -m vpvc_gui in
the corresponding Python or Anaconda environment. This will
open a window, similar to the one displayed in figure 2. In
the menu Data distribution in the leftmost column of the
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Figure 2. The GUI after starting it. On the leftmost side the distribution of the measurement data can be selected. The second and third
column contain boxes where the prior knowledge (menu Prior knowledge, section 2.1) and parameters describing the precision of the
sample size determination (menu Precision parameters, section 2.2) ought to be entered. Actions and error messages are shown by the
status bar on the bottom.

window the distribution of the measured data can be selected
to be either Normal or Poisson. For our toy example of tem-
perature measurements we will stick to Normal, an example
with a Poisson distribution is given in appendix A.2. The other
two columns, which logically belong to the left hand side of
figure 1, contain several boxes where (arbitrary) default val-
ues appear. Replacing these numbers with meaningful values
is the prerequisite for determining the sample size and will be
the content of this section.

Note also the status bar on the bottom of the window, where
expected actions and error messages will be displayed.

2.1. Elicitation of prior knowledge

This section provides explicit guidance for the elicitation of
prior knowledge that needs to be filled in the menu Prior
knowledge in the second column of the interface displayed in
figure 2. Prior knowledge is often gained from expert know-
ledge, or can be obtained from previous measurements. Spe-
cifically, we need prior knowledge concerning two different
quantities:

• The measurand, the quantity of interest.
• The dispersion (standard deviation) of the data.

In the example above the measurand would be the mean
temperature in the environment, whereas the dispersion is
the fluctuation of the measurement results due to random

influences such as noise in the physical environment or within
the measurement device. For both quantities, the measurand
and the dispersion, two numbers have to be specified that
quantify what is known about them.We here follow the recom-
mendations from [17, 18] and use the following:

• The median: estimate a value so that is equally likely that
the quantity is above and below.

• The upper quartile (75% quantile): suppose the quantity
is above the median, estimate a threshold which makes it
equally likely that the quantity falls below or above this
threshold in such a scenario.

In total we therefore need four numbers that have to be spe-
cified for the prior knowledge: the median of the measurand,
the upper quartile for the measurand, the median of the disper-
sion and the upper quartile of the dispersion. Let us come back
to the mean temperature example we introduced in section 1.
Suppose that we know that the temperature in the laboratory
is usually around 20 ◦C. In fact we would consider it equally
likely that the temperature in the room is above or below this
number, so that it seems natural to pick themedian of themeas-
urand as 20 ◦C. We further consider it equally likely that the
temperature is between 20 ◦C and 20.5 ◦C or above 20.5 ◦C
and pick therefore 20.5 ◦C as an upper quartile. Note that this
does not mean that 20.5 ◦C−20 ◦C= 0.5 ◦C is the uncer-
tainty about the temperature. Figure 3 illustrates our choice
of prior knowledge. The left plot shows the actual probability
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Figure 3. Probability distributions that are used by the mathematical model in the background for the prior knowledge from section 2.1.
The vertical lines show the medians (solid) and upper quartiles (dashed). For mathematical details on the used distributions compare
appendix A.3. Areas separated by vertical lines are marked by different colors. The blue areas are equal in size and their sum equals the red
area. Note that some parts of the distribution are not shown for the sake of depiction.

distribution of the measurand (the mean temperature) that is
used by the mathematical model in the background for the
prior knowledge specified in this section. The median of 20◦C
is marked by a solid line and the upper quartile of 20.5◦C by a
dashed line. Note that the red area has the same size as the sum
of the two blue ones and that, moreover, both blue areas are
equal in size. The reason for using the upper quartile instead
of the uncertainty is that it is often more intuitive to guess. Fol-
lowing [17, 18] a good approach to estimate the upper quartile
is to start from a value M, larger than the median, of which
one is quite confident that the true value of the quantity will
be below and to reduce M until it seem equally likely that the
quantity is above or between the median and M. In the GUI
displayed in figure 2 we can now enter in Prior knowledge
below Measurand the median and upper quartile.

For the dispersion we proceed in a similar manner with one
important exception. For mathematical reasons the approach
introduced in [1] needs a prior knowledge of the dispersion
that is ‘precise enough’, namely the upper quartile of the dis-
persion should be below a threshold that depends on the spe-
cified median of the dispersion3. Below the last box of the
prior menu there are parentheses with an entry of the shape
(Choose [...] < ... > [...] ) where the precise value of the
numbers [...] will depend on the value entered for the median
of the dispersion. The entry for upper quartile for the disper-
sion must be between the two limits specified there (the lower
limit is always simply the median). We here assume that we
know from using the measurement device in the past that res-
ults typically vary by 0.2◦Cwhich we take as median together
with an upper quartile of 0.25 (below the maximal possible
value of 0.26 in this case). The right plot of figure 3 shows
the according probability distribution encoded by this median
and upper quartile. Note that the median is not the maximum
(mode) of the distribution but really marks the point that splits
the area below the curve in two areas of the same size.

3 Themathematical reason for this is that the distribution that is used to model
the prior knowledge about the dispersion needs a variance in order for the
VPVC to work for k> 0, see [1] for details.

2.2. Specifying the target uncertainty

This section discusses how to fill in the menu Precision
parameters in the window displayed in figure 2. Once the
prior knowledge is specified, twomore ingredients are needed:

• The target uncertainty ε.
• The expansion factor k of the VPVC in (2).

The aim of the sample size determination based on the
VPVC is that the final standard uncertainty is below the target
uncertainty ε. However, the likeliness depends on the expan-
sion factor k. By default the GUI will put k= 2.0. Loosely
speaking, the object∆u2 in (2) describes a standard deviation
of u2 (under a suitable distribution), so that the corresponding
term in (2) can, in pure heuristics, be read as a ‘2σ’ error. In
[1] this was observed as a choice that performed quite good in
practice. For a less stringent sample size planning one might
pick k= 1.0. Finally, for k= 0 one recovers the APVC sample
size planning [10].

For the temperature example we will use the default value
of k= 2.0 and ε= 0.1. We can thus keep the default values
chosen by the GUI.

3. Determination of the sample size

Once the prior knowledge is entered and the target uncertainty
chosen, we are ready to determine the required sample size. To
do this in the GUI the button saying Compute sample size
must be pressed. If there is an error—the status bar indicat-
ing Invalid values encountered—this might be due to
an upper quartile for the dispersion that is beyond the indicated
limits, negative values for inappropriate quantities or an entry
that cannot be interpreted as a float. If there are no errors the
window will update as in figure 4. The sample size computed
via the VPVC (2) will be printed below the button together
with a plot showing the dependency of the VPVC criterion
(2) on n (in blue). The plot displays in addition a line show-
ing ε (horizontal, dashed) and the computed sample size (ver-
tical, dotted). In the right lower corner there is a menu Data
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Figure 4. The graphical user interface once the prior knowledge from section 2.1 and the target uncertainty from section 2.2 were entered
and the button Compute sample size has been pressed. Besides the sample size and a plot of the left hand side of (2) the window also
contains a menu for inference in the lower right corner. Its usage will be described in section 4.

evaluation plotted which can be used to compute the estim-
ate of the measurand together with its uncertainty once the
experiment was performed. We will give more details on this
in section 4 below.

Let us sketch the qualitative dependency of the sample size
on the values entered in section 2. Understanding this might
help to judge whether the computed sample size is too optim-
istic or restrictive and what could be done if the sample size is
intolerably high:

• Median of the measurand: this quantity has no influence on
the sample size.

• Upper quartile of the measurand: increasing this value will
increase the sample size. However, as was observed in [1],
the influence of this quantity on the sample size is often
rather small.

• Median of the dispersion: increasing this value will increase
the sample size.

• Upper quartile of the dispersion: increasing this value will
increase the sample size. Due to the restriction posed by the
mathematical model, see section 2.1, this number can how-
ever not be arbitrarily increased.

• Target uncertainty ε and expansion factor k: both, a smaller
ε and a larger k, will lead to a larger sample size, compare
also (3) below.

Concerning the prior knowledge it was demonstrated in
[1] that the most conservative, that is highest, sample size is

produced for a high median of the dispersion and high upper
quartiles of measurand and dispersion.

The plot included in the GUI demonstrates that the left hand
of side of (2) decays with an inverse power of the sample size
n. To be more precise, the authors showed in [1, lemma 3.2]
that for small ε (large n) the left hand side of (2) roughly
scales like a+k·b

n and the computed sample size consequently
as [1, lemma 3.4]:

n≃ a+ b · k
ε2

, (3)

where a and b are positive constants that depend on the spe-
cified prior knowledge.

Coming back to the temperature example we see that for
the values we entered in section 2 we obtain a sample size of
16. Taking the less cautious choice k= 1 leads to n= 11 and
the APVC (k= 0) to a sample size of 6.

4. Inference after the experiment

We now assume that the experiment has been performed and
that n measurements x1, . . . ,xn were taken. In the toy example
we use throughout this article, and with the sample size from
section 3, this would be a collection of n= 16 temperature
measurements. For the sake of presentation we use some sim-
ulated data. To visualize different scenarios we consider three
datasets consisting each of n= 16 ‘measurements’, all of them
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Table 1. Three simulated datasets used to demonstrate the usage of
the GUI in section 4. For the GUI the sufficient statistics (4) have to
be computed, cf. figure 5. The computed Bayesian estimate and
uncertainty are listed in the last two rows. All values are in in ◦C.

Dataset 1 2 3

x1 19.853 21.448 19.645
x2 19.580 20.938 19.208
x3 19.696 21.094 19.861
x4 19.948 20.744 20.063
x5 19.874 20.234 20.492
x6 19.305 21.196 20.481
x7 19.690 21.259 19.845

Raw x7 19.470 20.777 19.879
data x8 19.479 21.681 19.581

x10 19.582 20.564 19.432
x11 19.529 21.014 19.317
x12 19.791 20.944 20.780
x13 19.652 21.460 19.796
x14 19.524 21.441 19.825
x15 19.589 21.046 19.499
x16 19.567 21.113 20.311

Input x 19.633 21.060 19.876
to program s 0.164 0.357 0.436
Output Estimate 19.635 21.055 19.876
of program uncertainty 0.044 0.083 0.098

are listed in table 1. For generation we used a normal dis-
tribution with mean µ= 19.5 ◦C and standard deviation σ =
0.2 ◦C (dataset 1), µ= 21.0 ◦C, σ = 0.3 ◦C (dataset 2) and
µ= 20.0 ◦C, σ = 0.4 ◦C (dataset 3).

To do inference on these datasets, that is to determine an
estimate of the measurand together with an uncertainty, the
menu Data evaluation can be used. A cutout is shown in
figure 5. To use this menu the full dataset x1, . . . ,xn is actu-
ally not needed, but only two scalar quantities, the sufficient
statistics for the normal distribution:

x=
1
n

n∑
i=1

xi , s=

√√√√ 1
n− 1

n∑
i=1

(xi− x)2 , (4)

which are the mean and standard deviation of the measured
values x1, . . . ,xn. For the minimal sample size n= 1 the stand-
ard deviation s is ill-defined but is not used in the computation,
so that an arbitrary value such as 0 can be taken. In table 1 we
included the sufficient statistics for each of the datasets. In the
GUI both quantities can be entered in according boxes. The
program assumes by default that the computed sample size
was used. If the sufficient statistics were determined from a set
of measurements of a different sample size, the box Sample
size n can be adjusted. Once the sufficient statistics in (4) are
entered, the button Bayesian inference can be pressed and
should return the (Bayesian) estimate and uncertainty using
the prior knowledge entered in the program unless invalid val-
ues were entered (such as a negative s)4. The results include

4 To be precise, the mean and standard deviation of the posterior distribution
of the measurand are computed, see [1, 15].

Figure 5. Cutout of the GUI window (figure 4) after the sufficient
statistics from (4) have been entered and the button Compute
sample size has been pressed. Below the button the Bayesian
estimate and standard uncertainty of the measurand are displayed. In
addition, the GUI also displays the expanded 95% uncertainty,
compare appendix A.4 for details.

the Bayesian estimate and (standard) uncertainty of the meas-
urand and, in addition, the expanded 95% uncertainty. All
three output values are rounded to two significant digits of
the standard uncertainty. A more detailed description of the
output quantities is included in appendix A.4 of this article.
Moreover, the precise formulas for the Bayesian estimate and
uncertainty can be found appendix A.3, which illustrate in par-
ticular that the Bayesian inference combines x (for the estim-
ate) and s√

n (for the uncertainty) with the prior knowledge in
a sort of weighted average.

In table 1 we included the computed estimate and standard
uncertainty for each of the three datasets. Recall that the actual
dispersion σ of the data increases from the left to the right. If
we see (1), that is u< ε with ε= 0.1, as a measure of success
for the sample size planning then we can observe that succeed-
ing essentially depends on whether σ is markedly larger than
the value of the dispersion we specified by the median and
upper quartile in the prior knowledge (recall that we chose 0.2
as median and 0.25 as upper quartile). The same observation
was also found in [1]. We observe that only for the dataset 3,
which has a substantially larger dispersion of 0.4, the standard
uncertainty starts to scratch the threshold ε= 0.1.

5. Conclusion

Guidance for the usage of the variation of the posterior vari-
ance criterion (VPVC) for sample size planning was given.
This criterion uses Bayesian inference to incorporate prior
knowledge. To make the method accessible for users unfamil-
iar with Bayesian statistics a Python package with an easy-to-
use graphical user interface (GUI) is offered. Detailed instruc-
tions for the usage and behavior of this GUI were provided as
well as background information for the underlying criterion.
To perform Bayesian inference after the measurements have
been taken a small menu is included on the GUI where the
sufficient statistics can be entered. The GUI can help metro-
logists in sample size planning and provides at the same time
a simple-to-use software for the incorporation of prior know-
ledge into a Bayesian type A uncertainty evaluation.
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Figure 6. The GUI for sample size planning for Poisson distributed data, with values as in section A.2.

Appendix A

A.1. Howto for using the GUI

Step 1 Select distribution (Normal/Poisson);
Step 2 Specify prior knowledge, i.e.

• Median and upper quartile of measurand5;
• Median and upper quartile of data dispersion (only for
normal case);

Step 3 Enter target uncertainty ε;
Step 4 Press button Compute sample size;
Step 5 Carry out experiment and collect data;
Step 6 Enter mean (and standard deviation) of data;
Step 7 Press button Bayesian inference.

A.2. A Poisson example

Consider the number x of decays in a probe of radioactive
material in a time interval of length τ . It is common to assume
that x is governed by a Poisson distribution [19]:

x∼ Poi(λ),

where Poi(λ) denotes the Poisson distribution with parameter
λ. We want to determine n so that nmeasured samples yield λ
with an uncertainty below a pre-specified target uncertainty ε.

5 Median and upper quartile refer to two parameters of a distribution that
encodes the a priori degree of belief about the value of the measurand (or the
dispersion of the data, respectively). The a priori probabilities for the meas-
urand to be greater or less than the median are both 50%. Similarly, the upper
quartile splits the domain of values for the measurand above the median into
two equally probable subregions, see figure 3.

We then proceed similar as described for the normal example
in the article or in the Howto in appendix A.1.

A.2.1. Specify prior knowledge and desired precision From
experience or rough guessing we know that probes of the con-
sidered kind yield roughly around one decay per time interval
τ and enter this as median of the prior knowledge in the GUI,
see figure 6. We judge it to be equally likely that there are
between 1.0 and 1.5 counts per time τ and more than 1.5, so
that we take 1.5 as an upper quartile. We want to determine
λ with an uncertainty below 0.1 and set the target uncertainty
ε accordingly. Finally, we leave the default expansion factor
k= 2.0 for the VPVC as is.

A.2.2. Sample size planning and inference Pressing
Compute sample size reveals a n of 250.

Suppose that after performing the experiment and
observing 250 intervals of time τ we get an average of
x= 1

250

∑250
i=1 xi = 1.32 counts. Pressing then Bayesian

inference yields the estimate 1.318 together with an uncer-
tainty of 0.072, which is safely below the target uncertainty
of 0.1. Note that in contrast to the normal case the GUI also
returns the median and 2.5% and 97.5% quantiles to give a
more detailed description of the skew posterior distribution,
see A.4 and [1] for details.

A.3. Mathematical background (Bayesian inference—normal
distribution case)

This appendix sketches the mathematics behind the Bayesian
inference for the case of normal distributed data and is not

7
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needed for the usage of the GUI. For the Poisson case, we refer
to [1, 20].

Assuming a data distribution p(x1, . . . ,xn|µ,σ2) =∏n
i=1N (xi|µ,σ2), with the parameter of interest µ and the

nuisance parameter σ2, as well as a normal inverse Gamma
prior π(µ,σ2) =N (µ|µ0,λσ

2) · IG(σ2|α,β) with hyperpara-
meters µ0 and λ,β > 0,α > 2 the posterior distribution for µ
is given by

π(µ|x1, . . .xn)∝
ˆ

π(µ,σ2)p(x|µ,σ2)dσ2,

due to Bayes’ theorem and marginalization, which can be
explicitly specified as a shifted and scaled t-distribution [21]:

π(µ|x1, . . . ,xn) = t2α′

(
µ′
0,

β′

nλα′

)
,

where nλ = n+λ−1, µ ′
0 =

1
λnλ

µ0 +
n
nλ
x , α ′ = α+ n

2 and

β ′ = β+ 1
2

∑n
i=1(xi− x)2 + n

2λnλ
(x−µ0)

2 and x is as in (4).
The posterior mean and variance are then

Eµ∼π(µ|x1,...,xn)[µ] =
n
nλ
x+

1
λnλ

µ0, (5)

u2 = Varµ∼π(µ|x1,...,xn)(µ) =
n(n− 1)

nλ(n+ 2α− 2)
s2

n

+
2β+ n

λnλ

nλ(n+ 2α− 2)
(x−µ0)

2,

(6)

with s2 as in (4).

A.4. More detailed description of the inference results

All quantities displayed below the Bayesian inference
button relate to the marginal posterior distribution of the meas-
urand. For details on the used priors we refer to appendix A.3
and [1].

We will list the meaning of the displayed values in depend-
ency of the used data distribution.

A.4.1. Normal

• Estimate: The mean of the posterior distribution of the
measurand. As the latter is a symmetric t-distribution, this
number is equal to the median.

• Uncertainty: This is the Bayesian type A standard uncer-
tainty, i.e. the standard deviation of the posterior distribu-
tion of the measurand.

• Expanded uncertainty: The distance of the 97.5%
quantile to the median. As the posterior distribution is sym-
metric, this is identical to the distance of the 2.5% quantile to
the median. Note that the coverage factor, that is the quotient
between Expanded uncertainty and Uncertainty, will
depend on the prior knowledge.

A.4.2. Poisson distribution

• Estimate: The mean of the posterior distribution. As the
latter is not symmetric, this number will in general be dif-
ferent from the median value.

• Uncertainty: The standard deviation of the posterior dis-
tribution of the measurand.

• Median: The median of the posterior distribution of the
measurand.

• 2.5% quantile and 97.5% quantile: In contrast to
the normal distribution case, the distance between these
quantiles to the median is in general not equal so that no
simple expanded uncertainty can be specified.

Code details

The code for the GUI including installation instructions can be
found in the repository: https://gitlab1.ptb.de/JoergMartin/vp
vc_sample_size.git.

ORCID iD
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