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Abstract
We investigate how the training curve of isotropic kernel methods depends on the symmetry of the
task to be learned, in several settings. (i) We consider a regression task, where the target function is
a Gaussian random field that depends only on d∥ variables, fewer than the input dimension d. We

compute the expected test error ε that follows ϵ∼ p−β where p is the size of the training set. We
find that β∼ 1/d independently of d∥, supporting previous findings that the presence of invariants
does not resolve the curse of dimensionality for kernel regression. (ii) Next we consider
support-vector binary classification and introduce the stripe model, where the data label depends
on a single coordinate y(x) = y(x1), corresponding to parallel decision boundaries separating labels
of different signs, and consider that there is no margin at these interfaces. We argue and confirm
numerically that, for large bandwidth, β = d−1+ξ

3d−3+ξ , where ξ ∈ (0, 2) is the exponent characterizing
the singularity of the kernel at the origin. This estimation improves classical bounds obtainable
from Rademacher complexity. In this setting there is no curse of dimensionality since β→ 1/3 as
d→∞. (iii) We confirm these findings for the spherical model, for which y(x) = y(||x||). (iv) In the
stripe model, we show that, if the data are compressed along their invariants by some factor λ (an

operation believed to take place in deep networks), the test error is reduced by a factor λ−
2(d−1)
3d−3+ξ .

1. Introduction and related works

Deep neural networks are successful at a variety of tasks, yet understanding why they work remains a
challenge. In particular, we do not know a priori how many data are required to learn a given rule—not even
the order of magnitude. Specifically, let us denote by p the number of examples in the training set. After
learning, performance is quantified by the test error ε(p). Quite remarkably, empirically one observes that
ε(p) is often well fitted by a power-law decay ϵ∼ p−β . The exponent β is found to depend on the task, on the
dataset and on the learning algorithm [1, 2]. General arguments would suggest that β should be extremely
small—and learning thus essentially impossible—when the dimension D of the data is large, which is
generally the case in practice (e.g. in images where D is the number of pixels multiplied by the number of
color channels). For example in a regression task, if the only assumption on the target function is that it is
Lipschitz continuous, then the test error cannot be guaranteed to decay faster than with an exponent β∼ 1/D
[3]. This curse of dimensionality [4] stems from the geometrical fact that the distance δ among
nearest-neighbor data points decays extremely slowly in large d as δ∼ p1/D, so any interpolation method is
very imprecise. The mere observation that deep learning works in large dimension implies that data are very
structured [5]. Yet how to describe mathematically this structure and to build a quantitative theory for β
remains a challenge. Our present goal is to study the relationship between β and symmetries in the data in
simple models.

Recently there has been a considerable interest in studying the infinite-width limit of neural networks,
motivated by the observation that performance generally improves with the number of parameters [6–11].
That limit depends on how the weights at initialization scale with the width. For a specific choice, similar to
the LeCun initialization often used in practice, deep learning becomes equivalent to a kernel method [12],
which has been coined the neural tangent kernel. In kernel methods, the learned function Z(x) is a linear
combination of the functions K(x,xµ), where xµ are the training data and K is the kernel. These methods
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achieve performances somewhat inferior but still comparable to the more refined deep networks [13, 14],
and are often used for both regression and classification. In this work we study the learning curves of

isotropic kernels for which K(x,y) = K
(
||x− y||

)
, that include the popular Gaussian and Laplace kernels.

When these kernels are used on the image datasets MNIST and CIFAR-10, one finds that the learning
curves decay with respective exponents βMNIST ≈ 0.4 and βCIFAR−10 ≈ 0.1 that are much larger than
1/DMNIST ≈ 10−3 and 1/DCIFAR10 ≈ 3× 10−4 [2]. Several aspects of the data could together explain these
findings that β is much larger than 1/D.

(a) In the kernel literature, upper bounds on the test error with β independent of D are obtained
assuming that the target function lies in the reproducing-kernel Hilbert space of the kernel1. However for these
kernels this assumption is rather extreme: it supposes that the number of derivatives of the target function
that are smooth is proportional to the dimension itself [4, 15]; see [2] for a precise statement for Gaussian
random functions.

(b) The data live on a manifoldM of lower dimensionality d⩽D. This is indeed the case for MNIST,
where D≈ 15 [16–20], and CIFAR-10, where D≈ 35 [2]. This effect is presumably important, yet by itself it
may not be the resolution of the problem, since the exponents β are significantly larger than 1/D. Unless
stated otherwise, in this work the data manifold extends to the whole space, namely d=D.

(c) The function to be learned presents many invariants. It can be expressed in terms of just d∥ < d
spatial components. For example in the context of classification, some pixels at the edge of the image may be
unrelated to the class label. Likewise, smooth deformations of the image may leave the class unchanged. It
has been argued that the presence of these invariants is central to the success of deep learning [5]. In that
view, neural networks correspond to a succession of non-linear and linear operations where invariant
directions are compressed [21]. It is supported by the observations that kernels designed to perform such
compression perform well [5] and that compression can indeed occur at intermediate layers of deep
networks [22]. Yet, relating these views quantitatively to the learning-curve exponent β remains a challenge,
even for simple isotropic kernels and simple models of data. In [4], it was shown for a specific kernel in the
context of regression that the presence of invariants did not improve guarantees for β. It is currently unclear
if this results holds more generally to other kernels, beyond worst case analysis, and to classification tasks.

1.1. Our contribution
Our work consists of two parts that can be read independently, studying respectively regression and
classification for different models.

The first part is presented in section 2 and focuses on kernel regression. We consider a target function
that varies only along a linear manifold of d∥ directions of the input space, and is invariant along the
remaining d− d∥ directions. Without loss of generality, we consider that this dependence is on
x∥ ≡ (x1, . . . ,xd∥)

T, corresponding to the d∥ first components of the data vectors x= (x1, . . . ,xd)T. The target
function is a Gaussian random function ZT(x)≡ ZT(x∥) with covariance determined by an isotropic
translation-invariant teacher kernel KT(x). Kernel ridgeless regression is then performed using a distinct
student kernel KS(x). Such a teacher–student framework (without invariants) was first introduced in [23, 24]
and recently generalized in [25]. In these references it is investigated via an approximate formula based on
averaging on the randomness of the data distribution. Here instead we use the methods of [2] inspired by
earlier works on kriging [26] to compute the learning curve by calculating the expectation of the
mean-squared test error, so as to extract the exponent β. We find and confirm numerically that β is
independent of d∥ and depends only on d: one cannot escape the curse of dimensionality. This result
supports the idea that even in a typical, non-worst case analysis, regression using simple kernels does not
benefit from invariance in the data. Beyond the dependence on d, the exponent β is determined by the
teacher and student kernels only through two exponents αT(d),αS(d) related to the decay of their Fourier
transforms. In section 2, we define these exponents and we show that β = 1

d min(αT(d)− d,2αS(d)).
In the second part of this work, we study kernel classification with support-vector machines, for which

conclusions differ. We focus on simple models of data (d∥ = 1) that are arguably necessary first steps to build
quantitative predictions for β in more realistic settings. In section 3, we introduce the stripe model, in which
the class label y(x) =±1 only varies in one direction, as illustrated in figure 3. Again without loss of
generality, we consider y(x) = y(x1). This model corresponds to parallel interfaces separating regions where
the label changes sign. We further consider the case without margin, where the data distribution ρ(x) is
non-zero at interfaces.

The performance of kernel classification depends on the bandwidth σ of the kernel, that is the scale over
which it varies significantly. If σ is much smaller than the distance δ between training points, then the

1 Such a Hilbert space is the set of all functions f with finite K-norm: ||f||K <∞; see [43].
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support-vector machine is tantamount to a nearest-neighbor algorithm, which inevitably suffers from the
curse of dimensionality with an exponent β∼ 1/d. However in the limit of large σ, we provide scaling
(heuristic) arguments that we systematically confirm numerically, showing that β = d−1+ξ

3d−3+ξ , where ξ is an
exponent characterizing the singularity of the kernel at the origin (e.g. ξ= 1 for a Laplace kernel). This
exponent β stays finite even in large dimension.

In section 4, we show that these results are not restricted to strictly flat interfaces: the same exponent β is
found for the spherical model in which y(x) = y(||x||). More generally, our analysis suggests that this result
will break down if the boundary separating labels shows significant variation below a length scale
rc ∼ p−1/(d−1). Avoiding the curse of dimensionality thus requires us to have an increasingly regular
boundary separating labels as d increases.

Finally, in section 5, we come back to the stripe model and study how compressing the input data along
its invariants (namely all the directions different from x1) by a factor of λ improves performance—an effect
believed to play a key role in the success of deep learning [5]. We argue and confirm empirically that, when

mild, such a compression leaves the exponent β unchanged but reduces the test error by a factor of λ−
2(d−1)
3d−3+ξ .

1.2. Related works
1.2.1. Regression
The optimal worst-case performance of kernel regression has been investigated using a source condition that
constrains the decay of the coefficients of the true function in the eigenbasis of the kernel [27–29]. For
isotropic kernels and uniform data distribution, this condition is similar to controlling the decay of the
Fourier components of the true function as we do here, and with our notation2 the optimal worst-case
generalization error is ϵwc ≲ p−βwc with βwc =

αT(d)−d
αT

that is independent of the student. Yet in our
approach we average the mean-squared error on all Gaussian fields with a given covariance, leading to a
typical (instead of worst-case) exponent β = 1

d min(αT(d)− d,2αS(d)). As expected, we always have
β > βwc: this follows from the fact that the exponents αT,αS must be larger than d for the kernels to be finite
at the origin, a condition needed for our results to apply.

1.2.2. Classification
There is a long history of works computing the learning curve exponent β in regression or classification tasks
where the true function or label depends on a single direction in input space, starting from the perceptron
model [30] and including support vector classification [31]. More recently random feature models have
received a lot of attention, and can be analytically resolved in some cases using random matrix or replica
theories [9, 32–34]. Yet these results for classification generally consider linearly separable data3, and most
importantly for both regression and classification tasks apply in the limit d→∞ and p→∞ with α= p/d
fixed. In [31] for a single interface separating labels and kernels similar to ours, the learning curve of the
support vector classifier was shown to decrease as ε∼ 1/α, as also found for the perceptron [35]. Here we
consider both linearly and non-linearly separable data, and take the limit of large training set size p at fixed
dimension d. This is in our view warranted considering data sets commonly used as benchmarks, such as
MNIST or CIFAR for which dM ∈ [15, 35] and p≈ 6 · 104. In simple models for such numbers we do find
that the training curves are well described by the limit we study. Specifically, the exponent β we find depends
on dimension d and does not converge to 1 as d→∞, indicating that the two limits do not commute.

Classical works on kernel classification based on Rademacher complexity lead to lower bounds on
β⩾ 1/4 [36, 37] for certain algorithms applied to the stripe and spherical model4. Our estimation thus
improves on that bound, even in the limit of large dimension where we find β= 1/3.

2. Kernel regression: teacher–student framework

We consider kernel ridgeless regression on Gaussian random data that present invariants. Our framework
corresponds to a teacher–student setting for supervised learning [35, 38–42], where two variants of the same
model (here kernels) are used both to generate the data and to learn them. The target function ZT(x) is

2 Specifically, this literature introduces an exponent b characterizing the decay of the eigenvalues λρ of the kernel with their rank ρ:
λρ ∼ ρ−b. In our setup it is straightforward to show that b=αS/d. Another exponent c (sometimes noted 2r [29] characterizes the
smoothness of the target function f⋆. It is defined as the largest exponent for which ⟨f⋆|K1−c

S f⋆⟩<∞. It is straightforward to show that

in our case, c= αT−d
αS

. The worst case exponent is βwc =
bc

bc+1
[27–29] and is expressed in our notations in the main text.

3 See [31] for an example of non-linearly separable data lying on a hypercube.
4 For example for a single interface, theorem 21 of [36] bounding the test error can be applied with a linear function f(x) = x1 which has
a finite RKHS norm. The bound on the test error then behaves as P−1/4. An algorithm minimizing the expression for the bound on all
functions on the RKHS ball of identical norm must thus lead to β⩾ 1/4.
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Figure 1. Sketch of a realization of the Gaussian random process ZT(x)∼N (0,KT). The kernel KT, and consequently the
random function ZT, is constant along the direction x⊥ and only depends on x∥.

assumed to be a random Gaussian processN (0,KT) with zero mean and covariance determined by a strictly
positive-definite isotropic translation-invariant teacher kernel KT(x,x ′) = KT (||x− x ′||), implying that
ETZT(x) = 0 and ETZT(x)ZT(x ′) = KT(x,x ′), where we denote by ET the expectation over the teacher
Gaussian random process5. Strictly positive-definiteness is required to generate such a random function.

We further assume that the function ZT(x) does not depend on all the variables x= (x1, . . . ,xd)T, but
only on the first components x∥ ≡ (x1, . . . ,xd∥)

T for some d∥ ≤ d: ZT(x) = ZT(x∥), as sketched in figure 1.

The Gaussian random process ZT(x) is constant along the subspace of x⊥ ≡ (xd∥+1, . . . ,xd)T when it is

generated by a Teacher kernel that has the same property, namely KT (||x− x ′||) = KT

(
||x∥ − x ′

∥||
)
. Indeed,

we have that

ET

[
ZT(x∥ + x⊥)−ZT(x∥)

]2
= 2KT(0)− 2KT(x⊥) = 0. (1)

The (finite) training set is made up by the values of the target function ZT(xµ) at p points {xµ}pµ=1.
Kernel (ridgeless) regression is performed with a student kernel KS(x,x ′), that we also take to be isotropic
and translation invariant and that can be different from the teacher kernel KT(x,x ′). The student has no
prior knowledge of the presence of invariants: its kernel is a function of all the spatial components.

Kernel regression consists in writing the prediction for the function ẐS(x) at a generic point x as a linear
combination of student kernel overlaps on the whole training set, namely

ẐS(x) =
∑
µ

aµKS(x
µ,x)≡ a · kS(x). (2)

The vector of coefficients a is determined by minimizing the mean-squared loss on the training set:

a= argmin
a

∑
µ

[
ẐS(x

µ)−ZT(x
µ)
]2
. (3)

The minimization of such a quadratic loss can be carried out explicitly, and the student prediction can be
written as

ẐS(x) = kS(x) ·K
−1
S ZT, (4)

where the vector ZT ≡ (ZT(xµ))nµ=1 contains all the samples in the training set andKµν
S ≡ KS(xµ,xν) is the

Gram matrix. By definition, the Gram matrix is always invertible for any training set if the kernel KS is
strictly positive definite. The generalization error is then evaluated as the expected mean-squared error on
out-of-sample data that were not used for training: numerically, it is estimated by averaging over a test set
composed of ptest newly sampled data points:

ϵT = Ex

[
ẐS(x)−ZT(x)

]2
=

1

ptest

ptest∑
µ=1

[
ẐS(x

µ)−ZT(x
µ)
]2
. (5)

5With respect to the kernel literature, note that in our setting ZT never belongs to the RKHS of KT , see e.g. [44]. The conditions for it to
belong to KS are discussed in [2].
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This quantity is a random variable, and we take the expectation also with respect to the teacher process to
define an average test error ϵ= ETϵT—in the numerical simulations that we discuss later, we simply average
over several runs of the Teacher Gaussian process.

We study how the expected test error ε decays with the size p of the training set. Asymptotically for large
p, this decay follows a power law ϵ∼ p−β . In [2], β was derived in the absence of invariants (d∥ = d),
building on results from the kriging literature [26]. It was found that β depends on three quantities: the
dimension d and two exponents αT(d),αS(d) related to the two kernels. These exponents describe how the
Fourier transform of the kernels decay at large frequencies: K̃T(w)∼ ||w||−αT(d), and similarly for the student
KS. Notice that, since the kernels are translation invariant, their Fourier transform is a function of only one
frequency vector w. Moreover, the exponents αT(d),αS(d) depend on the dimension of the space where the
Fourier transform is computed.

Our main theorem, formally presented with its proof in appendix A, is as follows:

Theorem 1 (Informal) Let ε be the average mean-squared error of the regression made with a student kernel KS

on the data generated by a teacher kernel KT, sampled at points taken on a regular d-dimensional square lattice
in Rd with fixed spacing δ. Assume that the teacher kernel only varies in a lower-dimensional space:
KT(x) = KT(x∥), with x∥ = (x1, . . . ,xd∥)

T a vector in d∥ ≤ d dimensions. The student kernel in contrast varies
along all d-dimensional directions in input space. Let the Fourier transforms of the two kernels decay at high
frequency with dimension-dependent exponents αT(d) and αS(d). Then as δ→ 0, ϵ∼ δβd with

β =
1

d
min(αT(d∥)− d∥,2αS(d)). (6)

Note 1: We expect that under broad conditions the quantity αT(d∥)− d∥ ≡ θT (as well as θS obviously)
does not depend on d∥, and that θT corresponds to the exponent characterizing the singular behavior of
KT(x) at the origin:

KT(x) = C0|x|θT + regular terms (7)

as discussed in appendix A. This fact can be shown (see below) for Laplace (where θT = 1) and Matérn
kernels whose Fourier transform can be computed exactly. Thus we recover the curse of dimensionality since
β = 1

d min(θT,2d+ 2θS)≤ θT/d, which is independent of d∥ and thus of the presence of invariants.
Note 2: A remark is in order for the case of a Gaussian kernel K(z) = exp

(
−z2

)
, since it is a smooth

function and its Fourier transform (being a Gaussian function too) decays faster than any power law at high
frequencies. As discussed and verified in the aforementioned paper, this theorem applies also to Gaussian
kernels, provided that the corresponding exponent is taken to be θ =∞. In particular, if the teacher is
Gaussian and the student is not, β = 2+ 2θS

d ; in the opposite scenario, where the teacher is not Gaussian but
the student is, β = θT

d ; if both kernels are Gaussian, β =∞ and the test error decays with respect to the
training set size faster than a power law.

Interpretation: The following interpretation can be given for theorem 1 when αS is large, leading to β = θT
d .

An isotropic kernel corresponds to a Gaussian prior on the Fourier coefficients of the true function being
learned, a prior whose magnitude decreases with wave vectors as characterized by the exponent αS. Clearly,
the number of coefficients that can be correctly reconstructed cannot be larger than the number of
observations p. For large αS, we find that kernel regression does indeed reconstruct well a number of the
order of p first Fourier coefficients, which corresponds to wave vectors w of norm ||w|| ≤ 1/δ ∼ p1/d. Fourier
coefficients of larger wave vectors cannot be reconstructed, however, and the mean-squared error is then
simply of order of the sum of the squares of these coefficients:

ϵ∼
ˆ
||w||≥p1/d

dd∥w ||w||−α(d∥) ∼ p[d∥−α(d∥)]/d ∼ p−θT/d. (8)

Numerical test:
We now test numerically that kernel regression is blind to the lower-dimensional nature of the task. We
consider a d=D− 1-dimensional sphere of unit radius Sd embedded in RD. To test robustness with respect
to our technical assumption of data points lying on an infinite lattice, we consider instead p i.i.d. points
sampled uniformly at random. The component xµi of each point is generated as a standard GaussianN (0,1)
and then the vector xµ is normalized by dividing it by its norm. Points belonging to such a training set have a
typical nearest-neighbor distance δ∼ p−1/D, and we will show that the test error decays with the predicted
scaling ϵ∼ δβD = p−β . For the numerical verification we take the student to be a Laplace kernel:

KS(z) = exp
(
− z

σ

)
, (9)

5
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Figure 2. Test error ε versus the size p of thetraining set for Gaussian data with Matérn covariance regressed using a Laplace
kernel. Identical colors correspond to the same parameter ν of the teacher Matérn kernel but varying dimension d∥ as indicated
in the legend. d∥ has no effect on the exponent β. The solid black lines represent the predicted power law with exponent

β = 2
3
min(ν,4).

that is characterized by α(d)= d+ θS with θS = 1. As teacher we use Matérn kernels, which are a family of
kernels parametrized by one parameter ν:

KT,ν(z) =
21−ν

Γ(ν)

(√
2ν

z

σ

)ν

Kν

(√
2ν

z

σ

)
, (10)

where Kν(z) is the modified Bessel function of the second kind with parameter ν, and Γ is the Gamma
function. Varying ν, one can change the smoothness of the instances of the Gaussian random process, and in
particular αT(d) = d+ θT with θT = 2ν. The spatial dimension is D= 4 and we vary the number of invariants
in the task by taking d∥ = 1,2,3. In order to fix d∥ we simply use z= ||x∥ − x ′∥|| instead of z= ||x− x ′|| when
computing the Teacher kernel. The scale of the kernel is fixed by the constant σ, that we have taken equal to 4
for both the teacher and the student. Notice that in theorem 1 the value of σ does not play any role since it
does not enter the asymptotic behavior of the test error (at leading order). In figure 2 we show that the
numerical simulations match our predictions. Indeed, in this specific case the predicted exponent is

β =
2

3
min(ν,4). (11)

Notice that the exponent that characterizes the learning curves is indeed independent of d∥. Its prefactor may
however depend on d∥ in general.

3. Support vector classification and stripe model

3.1. Stripe model
We consider a binary classification task where the labels depend only on one direction in the data space,
namely with y(x) = y(x1). Layers of y=+1 and y=−1 regions alternate along the direction x1, separated by
parallel planes. Two examples of this setting are sketched in figure 3, corresponding to a single and a double
interface. The points x that constitute the training and test set are i.i.d. of distribution ρ(x). To lighten the
notation, we assume that ρ(x) is uniform on a square box Ω of linear extension γ. Yet we expect our
arguments to apply more generally if ρ(x) is continuous and does not vanish at the location of the interfaces
(no margin). To confirm this view we will test and confirm below our predictions when ρ(x) is Gaussian
distributed, with each component xi ∼N (0,γ2) with some variance γ2.

3.2. Definition of margin SVC
In this section we consider margin support-vector classification (margin SVC). This algorithmmaximizes the
margin between a decision boundary and the points in the training set that are closest to it. The prediction of

6
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Figure 3. Example of decision boundaries considered in the stripe model, where the label y(x) of a point x depends only on its
first component x1. On the left is the single-interface setup, where the label function is y=+1 on one side of the interface and
y=−1 on the other. Points labeled in such a way compose a linearly separable dataset. On the right is the double-interface setup,
where points are labeled y=−1 in between the two parallel hyperplanes and y=+1 on the outside.

the label ŷ(x) of a new point x is then made according to the sign of the estimated decision function [43]:

f(x) =

p∑
µ=1

αµyµK

(
||xµ − x||

σ

)
+ b −→ ŷ(x) = sign f(x), (12)

where the kernel K is conditionally strictly positive definite [45]—a condition defined in appendix C, less
stringent than strictly positive definite. In equation (12) we write explicitly the kernel bandwidth σ since it
will soon play an important role. The formulation of the margin-SVC algorithm presented below is what is
referred to as the dual formulation, but it can be equivalently recast as an attempt to maximize a (signed)
distance between training points and the decision boundary [43]. In this dual formulation, the variables αµ

are fixed by maximizing

max
α

L(α), with L(α) =
p∑

µ=1

αµ − 1

2

p∑
µ,ν=1

αµανyµyνK

(
||xµ − xν ||

σ

)
, (13)

subject to the constraints

αµ ≥ 0, (14)

αµ > 0 if and only if yµf(xµ) = 1, (15)

Q≡
p∑

µ=1

αµyµ = 0 (charge conservation). (16)

The bias b is set to satisfy

min1≤µ≤p|f(xµ)|= 1 (canonical condition). (17)

Equation (15) states that a dual variable αµ is strictly positive if and only if its associated vector xµ lies on the
margin, that is yµf(xµ) = 1, otherwise it is zero. Vectors with αµ > 0 are called support vectors (SVs) and are
the only ones that enter the expansion of the decision function equation (12).

3.3. Some limiting cases of SVC
Vanishing bandwidth: If the kernel function K(z) decreases exponentially fast with some power of z, then in
the limit σ≪ δ, where δ is the average nearest-neighbor distance in the training set, the support-vector
machine becomes akin to a nearest-neighbor algorithm. A detailed analysis of this regime for the stripe
model is presented in appendix B; here we provide a qualitative argument assuming that the bias b is
negligible. If so, as σ→ 0 one has for any training point that f(xµ)≈ αµyµK(0), implying that αµ ̸= 0 to
satisfy |f(xµ)| ≥ 1: every point is an SV with identical αµ. f(x) at a random test point x is dominated by the

7
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Figure 4. Sketch of the decision boundary along the interface of the stripe model. Positive and negative points are respectively
represented in red and blue; the dark points correspond to the support vectors. The predicted decision boundary (dashed black
line) oscillates around the true decision boundary (solid black line) with a wavelength of the order of rc, the distance between
nearest support vectors. The characteristic distance between support vectors and the decision line∆ is much smaller than rc.

closest SV. The classification error is susceptible to the curse of dimensionality for such an algorithm, and
one expects generically ε∼ δ∼ p−1/d, as tested numerically in figure B1 for the stripe model.

Diverging bandwidth: In this work we focus on the other extreme case where the bandwidth is larger than
the system size, namely σ≫ γ. In this regime the kernel is always evaluated close to the origin. Assuming
that the kernel has a finite derivative in the neighborhood of the origin, we approximate it by its truncated
Taylor expansion:

K

(
||x− x ′||

σ

)
≈ K(0)− const.

(
||x− x ′||

σ

)ξ

+ o
(
(γ/σ)ξ

)
. (18)

The exponent ξ is related to the exponent θ introduced in section 2 by ξ=min(θ, 2), and varies from kernel
to kernel. For instance, we have ξ= 1 for Laplace kernels, ξ= 2 for Gaussian kernels, ξ = γ̃ for γ̃-exponential
kernels6 and ξ=min(2ν, 2) for Matérn kernels. In appendix C we show that for 0< ξ < 2 the right-hand
side is conditionally strictly positive definite (CSPD), which is the necessary condition for the SVC algorithm
to converge. In what follows, we consider 0< ξ < 2, which excludes the Gaussian case. A proof that in that
case the margin-SVC algorithm with the truncated kernel in equation (18) leads to the same solution as with
the full kernel in the limit σ≫ γ is presented in appendix D. Also, due to the charge conservation in
equation (16), the constant term K(0) in equation (18) may safely be ignored.

The decision function equation (12) associated with the considered radial power kernel hence becomes

f(x) = b−
p∑

µ=1

αµyµ
(
||x− xµ||

σ

)ξ

. (19)

where the positive constant in equation (18) has been removed by rescaling the bias and the αµ.

3.4. Single interface
We consider a single interface at location x1 = 0, with negative labels for x1 < 0 and positive ones for x1 > 0.
Already in this case, computing analytically the test error remains a challenge, and we resort to a scaling
(asymptotic) analysis to compute β. As p increases, SVs will be present on a narrower and narrower band
around the interface. We denote by∆ the characteristic extension of this band.∆ will depend in general on
the position x⊥ along the interface. Here we will not study this dependence, as we are interested on its
asymptotic behavior with p, γ and σ and only track how quantities depend on these variables. From the
canonical condition equation (17) of SVs we have that the function f varies of order one from one side of the
band to the other:

f(x⊥ +∆e1)− f(x⊥ −∆e1)∼ 1, (20)

where e1 is the unit vector orthogonal to the interface and x⊥ is any vector parallel to the plane.

6We use γ̃ to distinguish it from the variance of the data points.
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Another useful quantity is the distance rc between nearest SVs. It can be estimated by counting the
number of points lying within a cylinder of height∆ (along x1) and radius rc centered on an SV, whose
volume follows∼∆rd−1

c . Using that the density of data points is∼ p/γd, and imposing that the cylinder
contains only one additional SV, yields our first scaling relation:

p

γd
∆rd−1

c ∼ 1 =⇒ p∆rd−1
c ∼ γd. (21)

Finally, the last scaling relation results from the function fluctuations being of order one within the band
of SVs when moving parallel to the true boundary decision. Indeed, we shall show below that the function
gradient along e1 is constant at leading order in∆, and of order 1/∆ following equation (20). Then the facts
that (i) on each SV the function is fixed by f(xµ) = yµ and (ii) the distance of the SV with respect to the true
boundary fluctuates by a characteristic distance∆ jointly imply that the fluctuations of f(xµ) as xµ evolves
along the true boundary decision must be of the order of unity. This effect is illustrated in figure 4. The
characteristic transverse displacement along which these fluctuations decorrelate is simply the distance
among SV rc, thus

f(x⊥ + rce⊥)− f(x⊥)∼ 1, (22)

where e⊥ is any unit vector parallel to the plane. Due to these fluctuations, test points inside the band have a
finite probability to be incorrectly classified, and at fixed d7 the test error must be proportional to the
fraction∆/γ of points falling in that band:

ϵ∼∆/γ.

We now show that from these considerations alone β can be computed. Starting from equation (19) we
estimate the gradient of f along the normal direction e1 at any point on the interface:

∂x1 f(x⊥) =
ξ

σ

∑
µ∈Ω∆

αµyµ
(
||x⊥ − xµ||

σ

)ξ−1 xµ1
||x⊥ − xµ||

≈ ξσ−ξp
∆

γ

〈
αµyµxµ1 ||x⊥ − xµ||ξ−2

〉
µ∈Ω∆

, (23)

where the sum is over all SVs xµ indicated by the set Ω∆. The sum is replaced by its central-limit theorem
value valid for large p, and we use that the number of terms in that sum goes as p∆/γ. The average in
equation (23) scales as ᾱ∆γξ−2, where ᾱ is the mean value of the dual variables αµ. Imposing that
∆∂x1 f(x⊥)∼ 1 as follows from equation (20) then leads to our second scaling relation:

p ᾱ

(
∆

γ

)3

∼
(
σ

γ

)ξ

. (24)

Next we compute the consequences of equation (22), by recasting it in a more suitable format. We define
a smoothed function f̄(x⊥) of f(x⊥) on a scale rc:

f̄(x⊥) =

ˆ
dd−1x ′⊥ f(x ′⊥)G(x⊥ − x ′⊥), (25)

where the function G is the Fourier transform of θ(1/rc − ||k⊥||) (which is thus small when
||x⊥ − x ′⊥|| ≫ rc):

G(x⊥) =

ˆ
||k⊥||<1/rc

dd−1k⊥ e−ik⊥·x⊥ . (26)

Thus f̄(x⊥) is obtained by removing from f(x⊥) the Fourier components ||k⊥||> 1/rc. The constraint of
equation (22) is equivalent to imposing that the fluctuations between f and f̄ are of the order of unity.
Integrated on space this means that

γ−d+1

ˆ
dd−1x⊥

[
f(x⊥)− f̄(x⊥)

]2 ∼ 1, (27)

7The value of f(x) in the band is governed by the neighboring SVs, whose characteristic number is independent of p but should grow with
d. We believe this effect to be responsible for the non-commutativity of the limits limp/d→∞ limd→∞ and limd→∞ limp→∞. Indeed in
the former case, it is found [31] that ε and the fraction of SVs∆/γ scale differently withα, unlike what we argue and confirm numerically
in the second limit. We have checked numerically (not shown) that the ratio of these two quantities is indeed decaying with d at fixed p.
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that can be Fourier transformed asˆ
dd−1k⊥

[̃
f(k⊥)− f̃(k⊥) G̃(k⊥)

]2
=

ˆ
||k⊥||>1/rc

dd−1k⊥ f̃2(k⊥)∼ γd−1. (28)

The Fourier transform of the decision function along the transverse components can be computed as

f̃(k⊥) =

ˆ
dd−1x⊥ e−ik⊥·x⊥ f(x⊥) =

∑
µ∈Ω∆

αµyµ
ˆ

dd−1x⊥ e−ik⊥·x⊥K

(
||xµ − x⊥||

σ

)
. (29)

Using that ||xµ − x⊥|| ≈ ||xµ⊥ − x⊥|| and changing variables one obtains

f̃(k⊥)≈
∑

µ∈Ω∆

αµyµ e−ik⊥·xµ⊥ ·
ˆ

dd−1x⊥ e−ik⊥·x⊥K

(
||x⊥||
σ

)
≡ Q̃(k⊥) · K̃⊥ (k⊥) , (30)

where we have defined the kernel (transverse) Fourier transform K̃⊥ (k⊥) and the ‘charge’ structure factor
Q̃(k⊥). The former can be readily computed for Laplace and Matérn kernels, and at large frequencies it
behaves as K̃⊥ (k⊥)∼ σ−ξ ||k⊥||−(d−1+ξ). Concerning the charge structure factor, for ||k⊥|| ≫ 1/rc, the
phases associated with each term in the sum defining it vary significantly even between neighboring SVs.
From a central-limit argument the factor Q̃ then tends to a random variable with 0 mean and variance
ᾱ2p∆/γ. It is verified in appendix E.

We can now estimate the integral in equation (28):
ˆ
||k⊥||>1/rc

dd−1k⊥ f̃2 (k⊥)∼ ᾱ2p
∆

γ
σ−2ξ

ˆ
||k⊥||>kc

dd−1k⊥ ||k⊥||−2(d−1+ξ) ∼ ᾱ2p
∆

γ
σ−2ξrd−1+2ξ

c . (31)

The condition equation (28) leads to the last scaling relation:

ᾱ2p
∆

γ

(
rc
γ

)d−1+2ξ

∼
(
σ

γ

)2ξ

. (32)

Putting all the scaling relations together we find

∆∼ γp−
d−1+ξ
3d−3+ξ , ᾱ∼

(
σ

γ

)ξ

p
2ξ

3d−3+ξ , rc ∼ γp−
2

3d−3+ξ . (33)

And consequently the asymptotic behavior of the test error is given by

ϵ∼ ∆

γ
∼ p−β , with β =

d− 1+ ξ

3d− 3+ ξ
. (34)

Note 1: The second scaling argument leading to equation (32) can be readily obtained by making a
‘minimal-disturbance hypothesis’. Assuming that adding a new training point x∗ within the domain Ω∆ will
only affect the dual variables of the few closest SVs, the correction of the decision function on the new SV is
given by

∑
||xµ−x∗||≤rc

dαµ yµ
(
||xµ − x∗||

σ

)ξ

, (35)

where dαµ is the charge correction. One must have that
∑

||xµ−x∗||≤rc
dαµ yµ ≈−y∗α∗ to ensure that SVs

further away are not affected by this perturbation. Thus dαµ ∼ α∗ ∼ ᾱ, where the last equivalence stems
from the fact that the added SV is statistically identical to any other one. Finally, requiring that the new point
x∗ must also be an SV implies that the correction represented by equation (35) must be of the order of unity
to set |f(x∗)|= 1. Hence, we obtain the scaling relation (that implies equation (32) from equations (21)
and (24)):

ᾱ
( rc
σ

)ξ

∼ 1. (36)

Note 2: The above scaling arguments may also be carried out in the intermediate regime δ≪ σ < γ. In
that case, the kernel equation (18) introduces a cutoff to the volume of interaction in the transverse space. In
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particular, the number of terms in the sum of equation (23) now goes as (σ/γ)d−1p∆/γ and the average
scales as ᾱ∆σξ−2. The discussion on the fluctuations is however unaltered as rc ≪ σ by definition.
Assembling all the pieces yields the following scaling relations:

∆∼ γ

(
σ

γ

)−(d−1) d−3+ξ
3d−3+ξ

p−
d−1+ξ
3d−3+ξ , ᾱ∼

(
σ

γ

) 2ξd
3d−3+ξ

p
2ξ

3d−3+ξ , rc ∼ γ

(
σ

γ

) d−3+ξ
3d−3+ξ

p−
2

3d−3+ξ (37)

and

ϵ∼ ∆

γ
∼
(
σ

γ

)−(d−1) d−3+ξ
3d−3+ξ

p−
d−1+ξ
3d−3+ξ . (38)

Note that when this approach breaks down, namely when σ ~ rc, the predictions of the vanishing bandwidth
are recovered.

3.5. Multiple interfaces
The scaling analysis considered for the single interface can be directly extended to multiple interfaces. Let us
consider the setup of n interfaces separated by a distance w. Because the target function oscillates around the
n interfaces, its reproducing kernel Hilbert space (RKHS) norm increases with n leading to a more and more
complicated task. In the limit∆≪ w, the arguments presented between equations (25) and (32) that rely on
local considerations apply identically. The computation of the gradient is more subtle as the charges will in
general differ in magnitude on each side of interfaces. We discuss in appendix F how the resulting gradient
will scale with w. In particular, we identify three regimes on the (n, d)-plane as represented in figure 5. When
the dimension is large enough, in the green region, the gradient is dominated by points with large transverse
distance, ||x⊥|| ≫ w. For smaller dimensions, the typical transverse distance decreases so that, in the blue
region, the gradient is dominated by points of transverse distance ||x⊥|| ∼ w. For even smaller dimensions,
in the gray region, our description breaks down, because the SVC function is not sufficiently smooth and
microscopic effect should be accounted for. The power laws of the three usual observables are shown to be

∆∼ γ
( γ
w

) (d−1)s
3d−3+ξ

p−
d−1+ξ
3d−3+ξ , ᾱ∼

(
σ

γ

)ξ ( γ
w

) ξs
3d−3+ξ

p
2ξ

3d−3+ξ , rc ∼ γ

(
w

γ

) s
3d−3+ξ

p−
2

3d−3+ξ , (39)

with

s=

{
n+ 1, if 3≤ n≤ d+ ξ− 4

d+ ξ− 3, if d+ ξ− 4≤ n≤ d+ ξ− 1
, for n odd, (40)

or

s=

{
n, if 2≤ n≤ d+ ξ− 3

d+ ξ− 3, if d+ ξ− 3≤ n≤ d+ ξ− 1
, for n even. (41)

The scaling in p is unaltered by the presence of multiple interfaces. However, the increasing complexity of
the task is reflected by the large prefactor, which requires exponentially more training points to enter the
power-law decay as the width w decreases. Note that, for a given dimension, the task complexity, quantified
by s(d− 1)/(3d− 3+ ξ), stops increasing once n is large enough to enter the blue region.

3.6. Numerical results
In this section, we present the numerical simulations with which we verify the scalings predicted in the two
previous sections. Both the single- and the double-interface setups have been considered with data points
sampled from an isotropic Gaussian distribution of variance γ2 = 1 along each component. In the
single-interface setup the hyperplane is centered at x1 = 0, while in the double-interface setup one
hyperplane is located at xmin =−0.3 and the other at xmax ≈ 1.185498. In both setups, the probabilities of
positive and negative labels are equal. The margin-SVC algorithm is run using the class svm.SVC from the
python library scikitlearn, which is a soft margin algorithm. To recover the hard margin algorithm presented
in section 3.2, the regularization parameter C which bounds the dual variables from above (see for example
chapter 7 of [45] is set to C= 1020. All results presented in this section have been obtained with the Laplace
kernel of bandwidth σ = 100≫ γ. Further results with the Matérn kernel are displayed in appendix G.

8The value xmax =
√
2erf−1(1+ erf(xmin))≈ 1.18549 is chosen in such a way that the expected number of y=±1 points is the same.
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Figure 5. Sketch of the different regimes depending on the number of interfaces n and the space dimension d. In the green region,
the SVC algorithm is dominated by the large transverse contribution, ||x⊥|| ≫ w ; in the blue region, it is dominated by the short
transverse contributions, ||x⊥|| ∼ w ; in the gray region, microscopic effects, occurring at the scale ||x⊥|| ∼ rc, enter into play
and have not been investigated.

Figure 6. For the single-interface setup, we show the dependence on the training-set size p of the test error, the SV band thickness
∆, the scale rc and the SV mean dual variable ᾱ (from left to right). The points in the dataset are drawn from the standard normal
distribution in dimension d (see the color legend); their labels are defined according to the single-interface setup and learned with
the margin-SVC algorithm with the Laplace kernel (ξ= 1) of bandwidth σ= 100. The solid lines correspond to the average over
25 initializations, while the shaded region are the associated standard deviations. The dashed lines illustrate the power law
predicted in equation (33).

Figure 7. The same plots as in figure 6, but for the double-interface setup: we show the dependence on the training-set size p of
the test error, the SV band thickness∆, the scale rc and the SV mean dual variable ᾱ (from left to right). The points in the dataset
are again drawn from the standard normal distribution in dimension d (see the color legend); their labels are defined according to
the double-interface setup and learned with the margin-SVC algorithm with the Laplace kernel (ξ= 1) of bandwidth σ= 100.
The solid lines correspond to the average over 25 initializations, while the shaded regions are the associated standard deviations.
The dashed lines illustrate the power law predicted in equation (33).

The power-law predictions of section 3.4 are verified in figure 6 (for the single interface) and figure 7
(for the double interface). The considered numerical observables are defined as follows: the test error is the
fraction of mislabeled points in a test set of size ptest = 10000; the typical ᾱ is the average SV dual variable;
the band thickness∆ is the average distance of a SV to the closest interface; the procedure to estimate the SV
nearest-neighbor scale rc is described in appendix H. The exponents of the power laws are extracted by fitting
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Figure 8.We extract the exponents by fitting the curves in figure 6 (for the single-interface setup) and in figure 7 (for the
double-interface setup). We then plot the exponents for the SV band thickness∆ (left), the SV nearest-neighbor scale rc (middle)
and the SV mean dual variable ᾱ (right) against the dimension d of the data. The black solid line is the prediction of section 3.4,
while the circles correspond to the numerical data (blue points for the single-interface setup and orange points for the
double-interface setup).

Figure 9. Left: Test error ε versus the SV band thickness∆ for multiple values of the distance between the two hyperplanes w for
the double-interface setup in d= 5. The left interface is located at xmin =−1 and the right interface at xmax = xmin +w. Right:
The left plot is rescaled by w−1 both horizontally and vertically. The inset triangles indicate a slope of unity in a log–log scale.

the numerical curves in the asymptotic regime and compared to the theoretical predictions of section 3.4 in
figure 8. Note that in large dimensions we observe that the system has not yet fully reached the asymptotic
regime in the considered range of training-set sizes p.

We also observe that in the double-interface setup the system only enters the scaling regime when∆
becomes small enough compared to the distance w between the two hyperplanes, as discussed in section 3.5.
The crossover from the interfering-interface regime to the asymptotic regime is illustrated in figure 9. The
test error versus∆ displayed in the left panel for multiple values of w confirms that ε∼∆ when∆≪ w, as
expected from the discussion of section 3.5. We show in the right panel that the transition to the asymptotic
regime occurs when∆∼ w by rescaling the horizontal axis:∆→∆/w. Because ε∼∆ in the asymptotic
regime, it is necessary to also rescale the vertical axis for the curves to collapse, namely ε→ ε/w.

4. Spherical model

We consider a spherical interface separating y=+1 points outside a sphere of radius R from y=−1 points
inside. The relevant direction is therefore x∥ = ||x||, and the label is given by y(x) = sign(||x|| −R). We still
assume that the SV are distributed along the interface, thus forming a shell of radius R and thickness∆.
Once again, previous arguments presented between equations (25) and (32) that rely on local considerations
apply identically. Furthermore, we compute in appendix I the gradient ∂f/∂x∥ and find again the same
asymptotic result as for the planar interface specified in equation (23). Thus our predictions for the spherical
model are identical to the ones for the stripe model.

We test these results numerically for a sphere of radius R=
√
d9 with a Laplace kernel of variance

σ= 100. The results displayed in figures 11 and 12 confirm our analysis.

9 It guarantees that the fraction of positive and negative labels remain finite. In particular, in the limit d→∞, this fraction goes to 1/2.
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Figure 10. Nonlinear decision boundary for the spherical setup. The label function is y=−1 inside the hypersphere and y=
+1 outside. Note that the label only depends on the norm of the data, ||x||.

Figure 11. For the spherical setup, we show the dependence on the training-set size p of the test error, the SV band thickness∆,
the scale rc and the SV mean dual variable ᾱ (from left to right). The points in the dataset are drawn from the standard normal
distribution in dimension d (see the color legend); their labels are defined according to the spherical setup of radius R=

√
d and

learned with the margin-SVC algorithm with the Laplace kernel (ξ= 1) of bandwidth σ= 100. The solid lines correspond to the
average over 25 initializations, while the shaded regions are the associated standard deviations. The dashed lines illustrate the
power law predicted in equation (33).

Figure 12.We extract the exponents by fitting the curves in figure 11 for the spherical setup. We then plot the exponents for the
SV band thickness∆ (left), the SV nearest-neighbor scale rc (middle) and the SV mean dual variable ᾱ (right) against the
dimension d of the data. The black solid line is the prediction of section 3.4, while the dots correspond to the numerical data
(blue points for the single-interface setup and orange points for the double-interface setup).

5. Improving kernel performance by compressing invariants

In this section, we investigate how compressing the data along the irrelevant directions x⊥ affects the
performance of kernel classification. This analysis is of particular interest for neural networks, where it is
now argued (see for instance [5]) that a progressive capability to compress invariants in the data is built up
moving through the layers of deep networks.

5.1. Stripe model
We consider the stripe model of section 3 with one additional parameter: the amplification factor λ. If the
original distribution was characterized by the scales γ1, . . . ,γd along each space direction, we now apply a
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Figure 13. Dependence on the amplification factor λ of the test error (left), the SV band thickness∆ (middle) and the SV mean
dual variable ᾱ (right) for the single-interface setup with p= 1000 in different dimensions (see the color legend). The SVC
algorithm is run with the Laplace kernel (ξ= 1) of bandwidth σ = 100≫ δ. The solid lines correspond to the average over 20
initializations and the shaded regions are the associated standard deviations. The dashed lines illustrate the power-law predictions
of equation (45).

contraction in the transverse space: γi → γi/λ for i= 2, . . . ,d. Following the same reasoning as in section 3.4,
we can track the effect of the additional amplification parameter. It is not sufficient to merely rescale γ, since
the compression is not isotropic. Nevertheless, it is easy to see that the first scaling becomes

λd−1 rd−1
c ∆p∼ γd, (42)

since the density of points inside the SV band is now∼ pλd−1/γd. Then, for the second scaling relation, we
need to rescale the gradient ∂x1 f defined in equation (23). The amplification factors only alter the transverse
space: when approximating the average by an integral, the boundaries are rescaled to γ/λ in each transverse
direction. The second scaling is thus

λ2−ξ p ᾱ

(
∆

γ

)3 (γ
σ

)ξ

∼ 1. (43)

Finally, when imposing that the fluctuations between f and its smoothed version f̃ are of the order of unity,
one only needs to update the volume of the transverse space in equation (27): γd−1 → (γ/λ)d−1, which leads
to the last scaling,

λd−1 ᾱ2 p
∆

γ

(
rc
γ

)d−1+2ξ

∼
(
σ

γ

)2ξ

. (44)

Assembling all the scaling relations yields

ϵ∼∆∼ γ λ−
2(d−1)
3d−3+ξ p−

d−1+ξ
3d−3+ξ , ᾱ∼

(
σ

γ

)ξ

λξ
3d−5+ξ
3d−3+ξ p

2ξ
3d−3+ξ , rc ∼ γ λ−

3d−5+ξ
3d−3+ξ p−

2
3d−3+ξ . (45)

These power laws are assessed numerically for the Laplace kernel (ξ= 1) of variance σ= 100 and a training
set of size p= 1000 generated from the Gaussian distribution of variance γ2 = 1. Varying the amplification
factor over eight orders of magnitude (see figure 13), our predictions hold in a broad range of λ but break
down at large and small values, as we now explain.

In the limit λ→ 0, the relevant direction x1 is negligibly small compared to the other directions;
information is thus suppressed and points are classified at random: the test error goes to 1/2. Furthermore,
all training points must be SVs, and indeed∆→ ⟨|x|⟩x∼N (0,1) =

√
2/π (which is the average distance from

any point in the dataset to the interface) and ᾱ→ 1.
In the opposite limit λ→∞ the setup lives in dimension one (seeing only x1) and all curves converge

independently of the space dimension d. These relations allow us to identify a critical scale λc at which the
multidimensional system reduces effectively to a one-dimensional system. It occurs when the test error of the
compressed multidimensional kernel is equal to the test error of the kernel that only sees the component x1.
Using our scalings, we find

λ−
2(d−1)
3d−3+ξ p−

d−1+ξ
3d−3+ξ ∼ p−1 =⇒ λc ∼ p. (46)
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5.2. Cylinder model
We now consider a cylinder model in d= d∥ + d⊥ dimensions. A point x= (x∥,x⊥) ∈ Rd (with x∥ ∈ Rd∥

and x⊥ ∈ Rd⊥) has a positive label if ||x∥||> R∼ γ and a negative label otherwise. Such a model is also
characterized by the asymptotic scalings in p specified in equation (23).

As in the previous section, we compress the perpendicular directions by the amplification factor λ:
x⊥ → x⊥/λ. The derivations of the scaling relations equations (42) and (44) hold equally. However, the
scaling relation equation (43) is now independent of the amplification factor: the characteristic size of the
transverse space occurring in the gradient integral equation (23) remains of the order of the system size γ.
Assembling the different scalings yields

ϵ∼∆∼ γ λ−
ξd⊥

3d−3+ξ p−
d−1+ξ
3d−3+ξ , ᾱ∼

(
σ

γ

)ξ

λ
3ξd⊥

3d−3+ξ p
2ξ

3d−3+ξ , rc ∼ γ λ−
3d⊥

3d−3+ξ p−
2

3d−3+ξ . (47)

6. Conclusion

We have studied the learning curve exponent β of an isotropic kernel in the presence of invariants,
improving on worst case bounds previously obtained in the literature. For regression on Gaussian fields, we
find that invariants do not increase β, which behaves as∼ d−1 in large dimension: methods based on
isotropic kernels suffer from the curse of dimensionality, as already argued in [4]. Our analysis also suggests a
simple estimate (8) for the performance of regression beyond the Gaussian fields considered here. For a
binary classification and simple models of invariants we find the opposite result. For a planar interface
separating labels, β⩾ 1/3 for all dimensions, improving on previous bounds.

Note that the striking difference between classification and regression does not stem from the distinct
models considered in each case. Indeed, following equation (8) we expect that performing mean-square
ridgeless regression on the stripe model leads to the curse of dimensionality with β= 1/d, as we have checked
on a few examples (data not shown). In the classification problem instead, due to the fact that only a tiny
band of data are SVs, the output function ends up being much smoother (i.e. with more rapidly decaying
Fourier components) than a step function, leading to better performance.

This success of classification holds when several interfaces are present, or in the spherical case where the
interface continuously bends. Thus, isotropic kernels can beat the curse of dimensionality even for
non-planar boundaries between labels. For which class of boundaries is this result true? The geometry of the
spatial distribution of SVs suggests an intuitive answer. The curse of dimensionality is beaten because a very
narrow (i.e. rapidly decaying with p) layer of width∆ is sufficient to fit all data, despite the fact that the
distance between SVs rc is much larger (and indeed subjected to the curse of dimensionality). Thus if the
boundary displays significant variations below the scale rc, it presumably cannot be detected by isotropic
kernels. In this view, beating the curse of dimensionality is only possible if the boundary becomes more and
more regular as the dimension increases. This geometrical view is consistent with the more abstract kernel
literature in which the curse is lifted if labels correspond to the sign of a regular function (in the sense of
belonging to the RKHS of the kernel) [36]. Empirically, sufficient regularity may be achieved in practical
settings at least along some invariants, such as completely uninformative pixels near the boundaries of
images. Under which conditions other invariants, e.g. related to translation, can be exploited by isotropic
kernels remains to be understood.

Note added: In [46], these results were extended beyond kernels, to the case of a wide one-hidden layer
net. In the lazy training regime, results are identical to those presented here, but more favorable exponents β
are found in the feature learning regime.
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Appendix A. Kernel regression with invariant dimensions

Theorem. Let KT(x) and KS(x) be two translation-invariant kernels (called the teacher and student
respectively) defined on Vd ≡ Rd, and let K̃T(w) and K̃S(w) be their Fourier transforms in Vd. Assume that

• KT(x),KS(x) are continuous everywhere and differentiable everywhere except at the origin x= 0;
• KT(x) and KS(x) are positive definite and isotropic, that is, they only depend on ||x||;
• KT(x) and KS(x) have a cusp at the origin and their d-dimensional Fourier transform decays at high fre-
quencies with dimensional-dependent exponents αT(d∥) and αS(d), respectively (we will evaluate them at
d∥ for the teacher and at d for the student);

• limx→0KT(0)<∞ and limx→0KS(0)<∞;
• limw→0 K̃T(w)<∞ and limw→0 K̃S(w)<∞.

Assume furthermore that the teacher kernel lives in a reduced space of dimension d∥ ≤ d, in the sense that

• KT(x)≡ KT(x1, . . . ,xd) = KT(x1, . . . ,xd∥)≡ KT

(
||x∥||

)
(where we have defined x∥ ≡ (x1, . . . ,xd∥)

T).

We use the teacher kernel to sample a Gaussian random field ZT(x)∼N (0,KT) at points that lie on a
d-dimensional regular lattice in Vd, with fixed spacing δ, and we use the student kernel to infer ẐS(x) at a new
point x ∈ Vd via regression, and performance is then evaluated by computing the expected mean-squared
error on points independent from those used for training. Then, as δ→ 0,

EMSE∼ δβd with β =
1

d
min(αT(d∥)− d∥,2αS). (A1)

Proof.
(i) Setup.
We first consider a finite number of points p in a box Vd = [−L/2,L/2]d and then take the limit

p,L→∞, keeping the spacing δ = Lp−1/d fixed. Regression is done by minimizing the mean-squared error
on the p points:

p∑
µ=1

[
ZT(xµ)− ẐS(xµ)

]2
, (A2)

and the generalization error is defined as

EMSE= L−dE
ˆ
Vd

ddx
[
ZT(x)− ẐS(x)

]2
. (A3)

(The expectation value is taken with respect to the teacher random process.)
Given a function F(x) on the d-dimensional box Vd = [−L/2,L/2]d, we denote its Fourier transform

(series) and antitransform by

F̃(w)≡Fd [F(x)] (w) = L−d/2

ˆ
Vd

ddxe−iw·xF(x), where w ∈ Ld ≡
2π

L
Zd, (A4)

F(x)≡F−1
d

[
F̃(w)

]
(x) = L−d/2

∑
w∈L

eiw·xF̃(w). (A5)

Given the structure of the teacher kernel we can write

K̃T(w) = L−d∥/2

ˆ
[−L/2,L/2]

d∥
dd∥x∥ e

−iw∥·x∥ KT

(
||x∥||

)
· L−d⊥/2

ˆ
[−L/2,L/2]d⊥

dd⊥x⊥ e−iw⊥·x⊥

= Fd∥

[
KT

(
||x∥||

)]
(w∥) · Ld⊥/2δw⊥

. (A6)

This formula states that the Fourier transform of the teacher kernel has frequencies that also live in the
corresponding d∥-dimensional subspace in the frequency domain. The term δw⊥

is a discrete delta (not a
Dirac delta): this will be important later because it implies that it is scale invariant: δaw⊥

= δw⊥
. The first
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term, that is the Fourier transform of the teacher kernel restricted to the d∥-dimensional space, decays at
large frequencies with an exponent αT(d∥) that depends on the intrinsic dimension d∥:

K̃∥
T(w∥)≡Fd∥

[
KT

(
||x∥||

)]
(w∥) = cT(d∥)||w∥||−αT(d∥) + o

(
||w∥||−αT(d∥)

)
. (A7)

(ii) Regression.
The solution to the regression problem can be computed in closed form:

ẐS(x) = kS(x) ·K
−1
S ZT, (A8)

where ZT =
(
ZT(xµ)

)p
µ=1

are the training data (the points xµ lie on the regular lattice),

kS(x) =
(
KS(xµ,x)

)p
µ=1

andKS =
(
KS(xµ,xν)

)p
µ,ν=1

is the Gram matrix, that is invertible since the kernel KS

is assumed to be positive definite. This formula can be written in Fourier space as

Z̃S(w) = Z̃⋆(w)
K̃S(w)

K̃S
⋆
(w)

, (A9)

where we have defined F⋆(w)≡
∑

n∈Zd F
(
w+ 2πn

δ

)
for a generic function F.

The mean-squared error can then be written using the Parseval–Plancherel identity. After some
calculations we find

EMSE= L−dE
ˆ
Vd

ddx [ZT(x)− ẐS(x)]
2 = L−dE

∑
w∈Ld

∣∣∣∣Z̃T(w)− Z̃⋆
T(w)

K̃S(w)

K̃⋆
S (w)

∣∣∣∣2

= L−d/2
∑

w∈Ld∩Bd

K̃⋆
T(w)− 2

[K̃TK̃S]
⋆(w)

K̃⋆
S (w)

+
K̃⋆
T(w)[K̃

2
S]
⋆(w)

K̃⋆
S (w)

2
, (A10)

where Ld =
2π
L Zd and Bd =

[
−π

δ ,
π
δ

]d
is the Brillouin zone.

In order to simplify this expression in the case where d∥ ≤ d, let us also introduce

F⋆∥(w∥)≡
∑

n∥∈Zd∥

F

(
w∥ +

2πn∥
δ

)
. (A11)

Using equation (A6) it follows that

K̃⋆
T(w)∝ δw⊥

K̃
⋆∥
T (w∥), (A12)

[K̃TK̃S]
⋆(w)∝ δw⊥

[K̃TK̃S]
⋆∥(w∥). (A13)

Plugging the last two equations into equation (A10) we see that, because of the terms δw⊥
, we have

EMSE∝
∑

w∥∈L∥∩B∥

K̃
⋆∥
T (w∥)

{
1+

[K̃2
S]
⋆(w∥)

K̃⋆
S (w)

2

}
− 2

[K̃TK̃S]
⋆∥(w∥)

K̃⋆
S (w∥)

. (A14)

Notice that K̃⋆
S and [K̃2

S]
⋆ do not turn into [K̃S]

⋆∥ and [K̃2
S]
⋆∥ : this is because the student kernel does not has

the same invariants as the teacher, and it depends on all the components. Here L∥ =
2π
L Zd∥ , B∥ =

[
−π

δ ,
π
δ

]d∥ .
(iii) Expansion.
Using the high-frequency behavior of the Fourier transforms of the two kernels we can write

K̃
⋆∥
T (w∥)∼ K̃T(w∥)+ δαT(d∥)cT(d∥)ψ

∥
αT(d∥)

(w∥δ), (A15)

[K̃TK̃S]
⋆∥(w∥)∼ K̃T(w∥)K̃S(w∥)+ δαT(d∥)+αScT(d∥)cSψ

∥
αT(d∥)+αS

(w∥δ), (A16)
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K̃⋆
S (w∥)∼ K̃S(w∥)+ δαScSψαS(w∥δ). (A17)

We have introduced the functions

ψα(w∥) =
∑

n∈Zd\{0}

||w∥ + 2πn||−α, (A18)

ψ∥
α(w∥) =

∑
n∥∈Zd∥\{0}

||w∥ + 2πn∥||−α. (A19)

The hypothesis KT(0)∝
´
dwK̃T(w)<∞ and KS(0)<∞ imply αT(d∥)> d∥ and therefore∑

n∥∈Zd∥ ||n∥||−αT(d∥) <∞. We can argue similarly that ψ∥
αT(d∥)

(0),ψ∥
αT(d∥)+αS

(0),ψαS(0) are finite.

Furthermore, the w∥’s in the sums are at most of order δ−1, therefore the terms ψα(wδ) are δ0 and do not
influence how equation (A10) scales with δ.

Expanding equation (A10) and keeping only the highest orders we find

EMSE

∼
∑

w∥∈L∥∩B∥

[
2cT(d∥)ψ

∥
αT(d∥)

(w∥δ)δ
αT(d∥) + c2Sψ2αS(w∥δ)

K̃∥
T(w∥)

K̃2
S(w∥)

δ2αS

]
+ o

(
||w||−αT(d∥)−d∥

)
. (A20)

We have neglected terms proportional to, for instance, δαT(d∥)+αS , since they are subleading with respect
to δαT(d∥), but we must keep both δαT(d∥) and δαS since we do not know a priori which one is dominant. The
additional term δ−d in the subleading terms comes from the fact that |L∩B| ∼ δ−d.

The first term in equation (A20) is the simplest to deal with: since ||w∥δ|| is smaller than some constant

for all w∥ ∈ L∥ ∩B∥ and the function ψ
∥
αT(d∥)

(w∥δ) has a finite limit, we have

δαT(d∥)
∑

w∥∈L∥∩B∥

2cT(d∥)ψ
∥
αT(d∥)

(w∥δ)∼ δαT(d∥)|L∥ ∩B∥| ∼ δαT(d∥)−d∥ . (A21)

We then split the second term in equation (A20) in two contributions.

Small||w∥||.We consider ‘small’ all the terms w∥ ∈ L∥ ∩B∥ such that ||w∥||< Γ, where Γ≫ 1 is of order δ0

but large. As δ→ 0, ψ2αS(w∥δ)→ ψ2αS(0) which is finite because KS(0)<∞. Therefore

δ2αS
∑

w∥∈L∥∩B∥
||w∥||<Γ

c2Sψ2αS(w∥δ)
K̃∥
T(w∥)

K̃2
S(w∥)

→ δ2αSc2Sψ2αS(0)
∑

w∥∈L∥∩B∥
||w∥||<Γ

K̃∥
T(w∥)

K̃2
S(w∥)

. (A22)

The summand is real and strictly positive because the positive definiteness of the kernels implies that their

Fourier transforms are strictly positive. Moreover, as δ→ 0, L∥ ∩B∥ ∩
{
||w∥||< Γ

}
→ L∥ ∩

{
||w∥||< Γ

}
,

which contains a finite number of elements, independent of δ. Therefore

δ2αS
∑

w∥∈L∥∩B∥
||w∥||<Γ

c2Sψ2αS(w∥δ)
K̃∥
T(w∥)

K̃2
S(w∥)

∼ δ2αS . (A23)

Large||w||. ‘Large’ w are those with ||w||> Γ: we recall that Γ≫ 1 is of order δ0 but large. This allows us to

approximate K̃∥
T, K̃S in the sum with their asymptotic behavior:

δ2αS
∑

w∥∈L∥∩B∥||w∥||>Γ

c2Sψ2αS(w∥δ)
K̃∥
T(w∥)

K̃2
S(w∥)

∝ δ2αS
∑

w∥∈L∥∩B∥||w∥||>Γ

||w∥||−αT(d∥)+2αS
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≈ δ2αS

ˆ 1/δ

Γ

dw∥w
d∥−1−αT(d∥)+2αS

∥ ∼ δmin(αT(d∥)−d∥,2αS). (A24)

Therefore in the end

EMSE∼ δmin(αT(d∥)−d∥,2αS) ≡ δβd. (A25)

The kernels K that we consider in the present article, namely Laplace and Matérn, share the property that
the respective exponents take the form αK(d) = d+ θK, θK being a dimension-independent constant that
only depends on the isotropic function that defines the kernel. For instance, we have α= d+ 1 for Laplace
and α(d)= d+ 2ν for Matérn (with parameter ν). Consequently, for these kernels the term α(d∥)− d∥ that
appears in the last equation is actually independent of d∥, and therefore so is the exponent β. We believe that
this structure of the exponent α(d) is more general. Signals that point in this direction can be found in several
papers. In [47] they show that (with our notation), for functions K(||x||) that are integrable in Rd and Rd+2,

Fd+2 [K(||x||)] (w)∝ w−1∂wFd [K(||x||)] (w), (A26)

and so if the Fourier transform in dimension d decays as w−α(d), in dimension d+ 2 it decays with an
exponent α(d+ 2) = α(d)+ 2. In [48] they prove a result for functions belonging to the Schwartz space
(rapidly decreasing functions). This result implies that if the Fourier transform in dimension d+ 1 decays
with an exponent α(d+ 1), then in dimension d the function decays with the exponent α(d) = α(d+ 1)− 1.

These results offer a link between the exponents in different dimensions. In [49] the author computes the
asymptotic behavior of the one-dimensional Fourier transform of functions with a singularity. In particular,
it follows that if K(x) = |x|θKK∞(x), with−1< θK ≤ 0 and K∞ ∈ C∞(R), then its Fourier transform at the
leading order decays with an exponent α(d= 1) = 1+ θK. There is a similarity with the value of the
exponents for the Laplace and Matérn kernels that we use: the value of θK is linked to the exponent of the
cusp |x|θK that appears in the Taylor expansion of the Kernel at the origin. We expect that this fact, namely
that the exponent αK(d) is the sum of spatial dimension d and of the cusp exponent θK , is more generic and
applies to most of the kernels that are used in practice.

Appendix B. Regimeσ ≪ δ: curse of dimensionality

We consider here the case where the kernel bandwidth σ is much smaller than the nearest-neighbor distance
δ. In this limit the contributions in the expansion of the decision boundary in equation (12) are significantly
suppressed because the kernel is supposed to decay when its argument is large, and the decision boundary is
dominated by the charge of training pattern xµ that is closest to x. The sign of the decision function is thus
fixed by the sign of the nearest neighbor’s charge and the accuracy is driven by the nearest neighbor distance,
which is susceptible to the curse of dimensionality.

We can see this more precisely if we approximate the kernel interaction between two points x and x ′ as

K

(
||x− x ′||

σ

)
≈


a0 = K(0) if x= x ′,

a1 = K
(
δ
σ

)
≪ a0 if x ′is one of the nearest neighbors of x ,

0 otherwise.

(B1)10

Hence, the decision function at a point xµ reads

f(xµ)≈ a0α
µyµ + a1

∑
ν∈∂xµ

ανyν + b≈ (a0 + a ′
1)(α0 + yµ∆α)yµ + b, (B2)

where the sum runs over the nearest neighbors of xµ. We use that all points are SV, which results from the
hierarchy a1 ≪ a0. Indeed, the interaction term alone is never sufficient for ||f(xµ)|| to exceed one. The
second equality is justified by the following reasoning. First, in the limit δ→ 0, the nearest neighbors typically
share the same sign, so that all the yν in the sum can be replaced by yµ. a ′

1 is thus a1 multiplied by the
number of terms in the sum. Then, because the distribution is assumed smooth and the kernel is blind to the
data structure coming from distant patterns, the SV charge may only depend on its label: αµ = α0 + yµ∆α.
∆α is taken independent of the associated label yµ, as we assume the labels to be balanced. The charge

10 For the derivation of the following scalings the notion of ‘nearest neighbors’ could be relaxed to include points that lie in a thin shell.
In any case we assume that the number of nearest neighbors of a given point if finite.
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Figure B1. Left: Test error versus the size of the training-set size p for the single-interface setup in the vanishing bandwidth
regime. The points in the dataset are drawn from the standard normal distribution in dimension d (see the color legend) and
learned with the margin-SVC algorithm with the Laplace kernel (ξ= 1) of bandwidth σ= 10−2. The solid lines correspond to the
average over 50 initializations, while the shaded regions are the associated standard deviations. The dashed lines illustrate the
power law ε~ p−1/d. The bias of the SVC decision function has been removed by hand to avoid the test error remaining stuck at
50% as discussed at the end of appendix B. Right: The power-law exponents are extracted by fitting the curves on the left plot and
compared to the nearest neighbor prediction.

conservation equation (16) implies immediately that∆α=−α0 ⟨y⟩, where ⟨y⟩= 1
p

∑
µ y

µ ∼ p−1/2 and

imposing the condition yµf(xµ) = 1 on each points xµ yields α0 = 1/(a0 + a ′
1) and b= ⟨y⟩.

We can now compute the test error of the SVC in the limit σ≪ δ. The prediction on a test point x is

ŷ(x)≈ sign

a1
∑
ν∈∂x

ανyν + b

≈ sign

[
a ′
1

a0
yNN + b

]
, (B3)

where with a slight abuse of notation we take the sum over the points xν in the training set that are nearest
neighbors of the test point x, and yNN is their label (as before, assumed to be constant among nearest
neighbors). We observe two distinct behaviors according to the ratio between the bias b= ⟨y⟩ and the
nearest-neighbor contribution a ′

1. If ⟨y⟩ ∼ p−1/2 is much larger than a ′
1, the above prediction yields

ŷ(x) = sign⟨y⟩ (for any x): this estimator cannot beat a 50% accuracy. In contrast, if ⟨y⟩ is much smaller than
a ′
1, the prediction yields ŷ(x) = sign(yNN): the classifier acts as a nearest-neighbor algorithm, and
consequently its test error scales as the nearest-neighbor distance, ε~ δ ~ p−1/d—namely, it is susceptible to
the curse of dimensionality—as we show in figure B1.

Appendix C. Proof that power kernels are CSPD

The margin-SVC algorithm presented in section 3.4 relies on the assumption that the Gram matrix is
conditionally strictly positive definite (CSPD). In this appendix, we prove that the power kernel

K(x,x ′) =−
( ||x−x ′||

σ

)ξ
indeed belongs to the CSPD class for 0< ξ < 2 and for any space dimension, by

introducing the following definitions and theorems.

Definition: A real function k is called conditionally strictly positive definite (CSPD) in Rd, if

p∑
µ=1

p∑
ν=1

cµcνk
(
||xµ − xν ||

)
> 0, (C1)

for any set of p distinct points x1, . . . ,xp ∈ Rd and any choice of p variables c1, . . . , cp, satisfying

p∑
µ=1

cµ = 0. (C2)
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Definition: A function ϕ is said to be completely monotonic in (0,∞) if it satisfies ϕ ∈ C∞(0,∞) and
(−1)n∂(n)ϕ(r)≥ 0, for all n ∈ N0 and all r> 0.

Theorem: Let ϕ ∈ C[0,∞)∩C∞(0,∞). The function k(•) = ϕ(|| • ||2) is CSPD in Rd for all d, if and only if
its negative derivative−ϕ ′ is completely monotonic on (0,∞) and ϕ is not a polynomial of degree at most one. A
proof can be found in chapter 8 of [50].

The introductory statement arises naturally when considering the univariate function ϕ(r) =−rξ/2

defined on R+. Following the theorem and the definitions, one can easily show that the function
−ϕ ′(r) = ξ

2 r
ξ/2−1 is completely monotonic on (0,∞) for 0⩽ ξ⩽ 2. The condition that ϕ be not a

polynomial of degree at most one excludes further the cases ξ= 0 and ξ= 2, which proves that the function
k(r) =−rξ is CSPD for 0< ξ < 2. Note that a radial kernel is defined as the multivariate function
K(x,x ′) = k(||x− x ′||), and that if the kernel generator k is CSPD, the kernel K is also called CSPD.

Appendix D. Largeσ convergence of the SVC algorithm

In section 3.4, it is loosely argued that in the limit of large σ one could replace the actual kernel K(r/σ) by its
truncated Taylor expansion K̂(r/σ). Here, we prove that in the limit σ→∞ the SVC solution with the
truncated kernel converges to the actual SVC solution: {α̂µ} σ→∞−−−−→ {αµ}.

We assume that the kernel K can be written as

K
( r

σ

)
= K̂

( r

σ

)
+ o

(
σ−ξ

)
, with K̂

( r

σ

)
= c0 + c1

( r

σ

)ξ

. (D1)

For a given classification problem {(xµ,yµ)}, the SVC algorithm converges to a set of dual variables {αµ},
respectively {α̂µ}, provided that the associated kernel is CSPD. K̂ is proved to be CSPD in appendix C if
c1 < 0 and 0< ξ < 2, while K is assumed to be CSPD from the start. This condition guarantees that the
Lagrangian in equation (13) defines a strictly convex problem. Rescaling the dual variables αµ → αµ/σξ

yields the following rescaled Lagrangians:

L̂(α) =
p∑

µ=1

αµ − c1
2

p∑
µ,ν=1

αµανyµyν ||xµ − xν ||ξ and L(α) = L̂(α)+ ϵ(σ). (D2)

The rescaled solution {α̂µ} of the maximizing problem with the Lagrangian L̂ is well defined in the limit
σ→∞, hence the strict convexity of both Lagrangian ensures that {α̂µ}→ {αµ}, when the perturbation
ε(σ) vanishes.

Appendix E. The charge structure factor

The charge structure factor Q̃ introduced in equation (30) is a good measure of the fluctuations in the system
and, in particular, of the cutoff occurring at the scale rc. It is argued in section 3.4 that Q̃2(k⊥)∼ ᾱ2p∆/γ at
high frequencies, namely ||k⊥||> r−1

c . This scaling is verified numerically in figure E2.
The data are obtained as follows: for each ||k⊥||, a set of N = 2000 random wave vectors is generated on

the interface; the associated factor is computed by summing over the SV of the considered setup and then
averaged. The fluctuations observed at large ||k⊥|| decrease when N increases. The insets illustrate the
expected asymptotic behavior Q̃2

∞ ≈ ᾱ2p∆/γ, while the vertical dotted lines correspond to the typical
nearest-neighbor distance rc.

Appendix F. SVC gradient of the multiple-interface setup

Consider a setup of n (odd) interfaces separated by a distance w. We count the interfaces with the index
I=− n−1

2 , . . . , n−1
2 and set the middle interface at x1 = 0, so that x1,I = Iw. We call∆I the band thickness on

each side of the Ith interface and denote the mean SV dual variable on its left, respectively on its right, by ᾱI,
respectively ᾱ ′

I . Without loss of generality, we fix the sign of the setup by setting y(x1)=+1, for x1∈[0,w].
The symmetry of the system imposes that∆−I =∆I and ᾱ ′

I = ᾱ−I for all I> 0, as well as that ᾱ ′
0 = ᾱ0.

Following the same construction as in section 3.4, in the central-limit approximation the SVC function
on the point x= (x1,0) is given by

f(x1) = b− pσ−ξγ−d

n−1
2∑

I=− n−1
2

(−1)I
ˆ ∆I

−∆I

du sgn(u) ᾱI(u)g(x1 − x1,I − u), (F1)
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Figure E2. Charge structure factor as a function of the (transverse) wave vector amplitude ||k⊥||, for different training set sizes p
and dimensions d= 5, 30. We plot the square Q̃2 (k⊥) averaged over N= 2000 samples, normalized by the expected

high-frequency variance Q̃2
∞ = ᾱ2p∆/γ. The inset plot shows Q̃2

∞ versus the size of the training set p.

where

g(x) =

ˆ
dx⊥(x

2 + ||x⊥||2)ξ/2 ∼
ˆ w

0
dr rd−2 (x2 + r2)ξ/2︸ ︷︷ ︸

gS(x)

+

ˆ γ

w
dr rd−2 (x2 + r2)ξ/2︸ ︷︷ ︸

gL(x)

, (F2)

and ᾱI(u) = αI, respectively ᾱI(u) = α ′
I , for u< 0, respectively u> 0. By symmetry, the target function is of

the form11

f(x1) = β1x1 + · · ·+βix
i
1 + · · ·+βnx

n
1 +O(x1)

n+2, (F3)

with i only running over odd indices. Imposing that the target function is zero on each interface, all
coefficients can be expressed in terms of βn: βi = biwn−iβn, where bi ∼O(1). Similarly, the SVC condition
that ∂x1 f(xI)∆I is identical on each interface allows us to relate all band thicknesses to∆0:∆I = dI∆0, with
dI ∼O(1). Denote by α, δα and∆ respectively the typical values of (α ′

I +αI)/2, ||α ′
I −αI||/2 and∆I . One

can obtain the β coefficients associated with equation (F1) by differentiating it, namely

βi =
f(i)(0)

i!
=

∞∑
j=0

gLi+1+2jTj︸ ︷︷ ︸
βL
i

+gSi+1w
d+ξ−2−i∆2α︸ ︷︷ ︸

βS
i

, (F4)

where gLi ∼ γξ−1−iσ−ξ , gSi ∼ γ−dσ−ξ and Tj ∼O
(
∆2w2jα

)
+O

(
∆w2j+1δα

)
. The constrained scaling

between the β coefficients forces the terms of index j= 0, . . . ,n− i in the sum defining βL
i to cancel each

other up to higher order. In particular, δα~α∆/w, and βL
n ∼ w2∆2α. Eventually, the scaling of the gradient

depends on the hierarchy between βL
n and β

S
n:

1∼∆∂x1 f∼


pα

(
γ
σ

)ξ (∆
γ

)3 (
w
γ

)n+1
, ifn≥ d+ ξ− 4,

pα
(
w
σ

)ξ (∆
w

)3 (w
γ

)d
, ifn≤ d+ ξ− 4.

(F5)

Also, if n> d+ ξ− 1, when computing βS
n, divergences will occur while differentiating g

S. This sets an upper
bound on the number of interfaces we can consider without considering microscopic effects on the gradient.
For an even number of interfaces, a similar discussion holds with the difference that n should be replaced by
n− 1 in the above expressions. Finally, the resulting scaling of the usual observables are given in section 3.5.

11The shift constant β0 is discarded because of the bias freedom in equation (F1).

23



Mach. Learn.: Sci. Technol. 2 (2021) 025020 J Paccolat et al

Figure G3. Dependence on the training set size p of the SV mean dual variable ᾱ (left), the SV band thickness∆ (middle) and
the test error (right) for the single-interface setup in dimensions d= 2, 3, 5, 10. The SVC algorithm is run with the Matérn
kernel equation (10) with bandwidth σ = 100≫ δ and parameter ν= 0.1, 0.3, 0.5, 0.7, 0.9 for which the kernel is
conditionally strictly positive definite. The solid lines are averaged over 50 initializations and the shaded regions represent the
standard deviation. Dashed lines illustrate the power-law predictions of equations (33) and (34).

Appendix G. SVC scaling with theMatérn kernel

Results of simulations on the single-interface setup with Matérn kernels are shown in figure G3, for several
parameters ν and several dimensions d. All the curves follow the scalings predicted in section 3.4.

Appendix H. Numerical definition of the scale rc

In section 3.4, the scale rc is defined geometrically as the distance between nearest support vectors. The
numerical definition of rc is different as it aims to confirmthe ‘minimal disturbance hypothesis’ presented in
the note at the end of section 3.4. From this point of view, the scale rc is also the scale below which the
charges of two SVs are not correlated. To test this idea, the solution of the margin-SVC problem is computed
once for a benchmark training set and a second time for the same training set with one additional point close
enough to the interface to be a SV. We then calculate the cumulative distribution of the charge variations
dαµ = ||αµ −α ′µ|| as function of their distance from the additional point rµ. The resulting distribution is
displayed in figure H4 for multiple realizations of the single-interface setup with d= 5 and p= 6810. The
scale rc is then defined as the distance for which the cumulative distribution reaches a given value C< 1. The
particular choice of C does not alter the power-law behavior.

Appendix I. Scaling arguments for the spherical setup

In this appendix, we sketch how the scaling relations in section 3.4 may be derived for the spherical interface
setup discussed in section 4, where the label only depends on the norm of the vector: y(x) = sign(||x|| −R),
with R the radius of the sphere. In the same line as for the linear interface, it is assumed that all SVs lie within
a shell of thickness∆≪ R around the interface. The decision function on the vector x,

f(x) = b−
p∑

µ=1

αµyµ
(
||x− xµ||

σ

)ξ

, (I1)

is better apprehended in a Cartesian frame such that x= (x1 = ||x||,0), which requires us to rotate all SVs:
xµ → x ′µ =Rxµ. In the large p limit, the charge conservation, Q=

∑p
µ=1α

µyµ = 0, reads

0=

ˆ
ddxρ(x)α(x)y(x) = Sd−1

ˆ ∆

−∆

du(R+ u)d−1ρ(R+ u)α(R+ u)y(R+ u). (I2)

Spherical coordinates are used in the second equality: the angular variables trivially integrate to the unit
(d− 1)-sphere surface, Sd− 1, and the variable u= r−R is used instead of the radius r= ||x||. For simplicity,
we assume that the population distribution is radial: ρ(x) = ρ(r). Were this not the case, the angular integral
would merely yield a different finite factor.
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Figure H4. Example of the cumulative distribution of the amplitude of the dual variable variation as a function of the distance r
from the additional point (see the text above). Each color corresponds to a different realization of the interface setup with d= 5
and p= 6810. The vertical dashed line stands for the scale rc averaged over all realizations obtained with C= 0.9 (horizontal
dashed line).

As for the linear interface, the first scaling relation stems from the condition∆ · ∂x∥ f(x⋆)∼ 1, for any x⋆

lying on the spherical interface. According to the change of frame introduced above, the relevant direction
correspond to the first coordinate, namely x∥ = x1. The gradient expression (23) can thus be expressed as an
integral in spherical coordinate with the north pole x⋆ = (R,0):
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∂x∥ f(x
⋆) = ξσ−ξpSd−2

ˆ ∆

−∆

du(R+ u)d−1

ˆ π

0
dϕ sind−2ϕρ(R+ u)α(R+ u)y(R+ u)I(u,ϕ), (I3)

where the vector of integration norm is r=R+ u and its angle with respect to the north pole is ϕ. All other
angles simply integrate to the (d− 2)-sphere surface, Sd− 2, since they do not contribute to the integrand

I(u,ϕ) = (x1 − x⋆1 )||x− x⋆||ξ−2 = a0(ϕ)+ a1(ϕ)u+O(u2), (I4)

with

a0(ϕ) =
1

2R

[
2R2(1− cosϕ)

]ξ/2
and a1(ϕ) =

[
1− ξ

2
(1− cosϕ)

][
2 R2(1− cosϕ)

]ξ/2−1
. (I5)

The leading order contribution a0 vanishes because of the charge conservation (equation (I2)), so the
gradient reads

∂x1 f(x
⋆)∼ p

ˆ ∆

−∆

du(R+ u)d−1ρ(R+ u)α(R+ u)y(R+ u)u

ˆ π

0
dϕ sind−2ϕa1(ϕ)∼ p∆2ᾱ (I6)

and the second scaling relation pᾱ∆3 ∼ 1 is identical as for the stripe model. Since the other relations are
obtained from local arguments, they are independent of the global shape of the classification task.
The scaling laws for the spherical model are thus also given by equations (33) and (34).
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