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Abstract

Stable isotope mixing models (SIMMs) provide a powerful methodology for quantifying rela-

tive contributions of several sources to a mixture. They are widely used in the fields of ecol-

ogy, geology, and archaeology. Although SIMMs have been rapidly evolved in the Bayesian

framework, the underdetermination of mixing space remains problematic, i.e., the estimated

relative contributions are incompletely identifiable. Here we propose a statistical method to

quantitatively diagnose underdetermination in Bayesian SIMMs, and demonstrate the appli-

cations of our method (named β-dependent SIMM) using two motivated examples. Using a

simulation example, we showed that the proposed method can rigorously quantify the

expected underdetermination (i.e., intervals of β-dependent posterior) of relative contribu-

tions. Moreover, the application to the published field data highlighted two problematic

aspects of the underdetermination: 1) ordinary SIMMs was difficult to quantify underdetermi-

nation of each source, and 2) the marginal posterior median was not necessarily consistent

with the joint posterior peak in the case of underdetermination. Our study theoretically and

numerically confirmed that β-dependent SIMMs provide a useful diagnostic tool for the

underdetermined mixing problem. In addition to ordinary SIMMs, we recommend reporting

the results of β-dependent SIMMs to obtain a biologically feasible and sound interpretation

from stable isotope data.

Introduction

In animal ecology, the development of a methodology for quantifying trophic interactions

between consumers and their dietary sources has a long history [1, 2]. Stable isotope mixing

models (SIMMs) are popular statistical tools not only for ecologists to estimate the relative

contribution of each dietary source to consumers based on isotopic signatures [3, 4], but also

used in the other fields such as climatology, oceanography, sedimentology and archaeology

[5–7]. Using a Bayesian framework, the applicability of SIMMs to complex isotopic mixing

spaces of realistic systems has rapidly improved [8]. The improvements include the incorpo-

ration of measurement errors [9], isotopic correlations [10], element concentrations [11, 12],

dietary routings [13], additional residual errors of unknown sources [12], and hierarchical

structures of consumer populations [14] and food-webs [15]. More recently, most of them are

applicable as an open-source program [16].
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However, the considerable advances in SIMMs have made it tempting to overlook a funda-

mental issue in mixing models, the underdetermined mixing problem [7, 16–19] (see S1

Appendix in S1 File). As the terminology suggests, this is a statistical problem related to the

underdetermination of estimates, originating from the analysis of many dietary sources against

few elements and/or problematic isotopic geometries (e.g., three or more sources are arranged

on the same line) in mixing spaces [17]. Let consider a simple example of underdetermined

mixing problem for Bayesian models. In this example, we are interested in a consumer species,

which has two candidate dietary sources with their relative contributions, θ and 1−θ (θ can be

either 1.0, 0.5 or 0.0 for simplicity). For sound mixing spaces, the unique relative contributions

of these sources have the maximal posterior probability, e.g., P(θ = 0.5)>P(θ = 1.0)�P(θ =

0.0). Statistically, such relative contributions are referred to as being identifiable (or estimable).

On the other hands, the underdetermined mixing problem has two or more relative contribu-

tions with the maximal posterior probability, e.g., P(θ = 0.5) = P(θ = 1.0)�P(θ = 0.0). Impor-

tantly, this problem may result in the inappropriate interpretation and wrong secondary use of

SIMM results; in the case of underdetermination, SIMM results cannot be summarized only

by a representative value (mean, median or mode) of the marginal posterior distribution.

The underdetermination is a general statistical problem but particularly notorious for

SIMMs, in which increasing the number of elements, rather than the number of isotope sam-

ples, is needed to improve the identifiability of relative contributions. Previous studies pro-

posed several methods to diagnose this problem (e.g., graphical checking [17], posterior

correlation [18], posterior multi-modality [18] and normalized source polygon area [19]).

However, these methods are unsuitable for diagnosing complex mixing spaces because their

diagnostic signals are sensitive to various sources of data uncertainty. Here we present an alter-

native method to quantitatively diagnose the underdetermination for existing Bayesian

SIMMs (Fig 1). In this paper, we explained how our method obtains the intervals of joint pos-

terior peaks as an accurate diagnostic of underdetermination, and demonstrated its applica-

tions to two motivated examples; a simple toy simulation [17] (Fig 2) and a published field

dataset for Brent geese (Branta bernicla) [12, 20] (Fig 3). The proposed method uses a simple,

general statistical framework (i.e., β-dependent posterior probability), and thus achieves accu-

rate diagnosability and broad applicability to all Bayesian SIMMs.

Materials and methods

Diagnosing underdetermination in SIMMs

Since SIMM is one of Bayesian statistical models, its posterior probability, p(θ|φ, X), is derived

from a prior, π(θ), and a data probability, p(X|θ, φ), as follows:

pðθjφ;XÞ ¼ pðXjθ;φÞ pðθÞ=
Z

pðXjθ;φÞ pðθÞ dθ; ð1Þ

where θ is a vector of estimated quantities (e.g., relative contributions), φ is a vector of user-

given quantities, and X is a vector of isotopic data. As an example of Eq (1), we described the

model of SIAR [12] in S2 Appendix in S1 File. To diagnose underdetermination, we intro-

duced a β-dependent posterior probability:

pbðθjφ;XÞ ¼ pðXjθ;φÞb pðθÞb=
Z

pðXjθ;φÞb pðθÞb dθ: ð2Þ

β-dependent posterior probability with β = 1 reduces to the ordinary posterior probability. For

large β (!1), the posterior probability of estimates other than the join posterior peak become

zeros (see S3 Appendix in S1 File for this proof). Thus, β-dependent posterior distributions
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with arbitrarily large β correspond to the distributions of the joint posterior peaks. An intrinsic

issue of the underdetermined problem is low identifinability among the relative contributions

of two or more sources, and thereby provides wide intervals of β-dependent posterior distribu-

tions (BDP). Importantly, the model complexity of SIMMs does not influence diagnosability

of our method. In this paper, we used the ΔBDP (the BDP width of 95% highest density proba-

bility interval) as a quantitative diagnostic for underdetermination. The ΔBDP will be near

zero when the underdetermined problem does not exist in the focal mixing space. Note that β
has little influence on ΔBDP if the β is sufficiently large (e.g., > 500).

Our method is non-Bayesian despite adoption of the full Bayesian setup for standard Mar-

kov chain Monte Carlo calculations. Because it works just as the device to numerically obtain

the joint posterior peaks (i.e., BDP), simultaneous calculations of the ordinary posterior are

needed to interpret the whole results of Bayesian SIMMs (Fig 1). Note that our method is

closely related to previous established methods of obtaining maximum likelihood estimates

(MLE) [21, 22] (also see S3 Appendix in S1 File). The difference between our method and their

MLE methods is whether priors are exponentiated or not.

Motivated examples

We provide two motivated examples. The first example is a two-isotope simulation in which

the consumer signature is at the centroid of four source signatures (Fig 2; see S4 Appendix in

S1 File for simulation details). This simulation was used to diagnose the underdetermination

by previous diagnostic methods [17, 18]. It also helps to confirm the theoretical validity of our

method: the BDP of each relative contribution theoretically becomes 23.9–26.0% in our

Fig 1. Proposed workflow for diagnostic checking of the underdetermined problem. First, we calculate the posteriors of both ordinary and β-dependent SIMM (panel

b) models from isotopic mixing space (panel a). Second, ΔBDP (i.e., 95% highest posterior interval of β-dependent posterior) is overlaid on the ordinary posterior (panel

c), which make us easy diagnostic checking.

https://doi.org/10.1371/journal.pone.0257818.g001
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setting. The second motivated example is a set of published field data collected to investigate

the relative contributions of four different dietary sources (two seagrasses, green algae, and ter-

restrial grasses) to Brent geese by using carbon and nitrogen stable isotope ratios [12, 20]

(Fig 3).

In these examples, we estimated relative contributions of sources to the mixture using ordi-

nary SIAR and β-dependent SIAR (i.e., SIAR with β-dependent posterior probability). In the

latter, we set β = 1,000 because sufficiently large β qualitatively unchanged the results (see S3

Appendix in S1 File). As described above, we used ΔBDP to diagnose underdetermination for

each source relative contribution. We also conducted correlation analyses between the esti-

mated relative contribution of a source and the others (S5 Appendix in S1 File). The mean

determination coefficient (�r2) is considered as another indicator of underdetermination [18],

which will approach one if underdetermination exists. The posterior multi-modality was not

used as an indicator of underdetermination because our examples exhibit no multi-modality.

Fig 2. Isotopic mixing space and SIAR results of a toy simulation. The mixing space (left panel) represents the isotopic value of an individual consumer (a black

circle), and the means and standard deviations of isotopic values of four sources (colored circles and bars). The posterior distribution of each relative contribution (right

panel) was calculated from ordinary (blue area) and β-dependent SIAR model (red area). The theoretical relative contribution is represented in Fig 1C.

https://doi.org/10.1371/journal.pone.0257818.g002
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To obtain the posterior distributions of both SIARs numerically, the Gibbs sampling and

importance sampling was implemented using R 4.1.1 [23] (our implementation is available as

an R package ‘siarbeta’ at https://github.com/yutakaos/archives/tree/master/simm/siarbeta).

We assigned uninformative or vague priors for all parameters according to previous studies

[12, 16].

Different error structure parameterizations

The recent publications [16, 24] compared the model performance between different error

structure parameterizations. To investigate the influence of error structure parameterizations

on underdetermination, we conducted an additional analysis for published geese data using

the Stock’s parameterization model (i.e., Eq 4 in [24]). The details of model formulations and

results are described in S6 Appendix in S1 File.

Fig 3. Isotopic mixing space and SIAR results of published Brent geese data. The mixing space (left panel) represents the fractionally corrected isotopic values of

individual consumers (black circles), and the means and standard deviations of isotopic values of four sources (colored circles and bars). The posterior distribution of

each relative contribution was calculated from ordinary (blue area) and β-dependent SIAR model (red area).

https://doi.org/10.1371/journal.pone.0257818.g003
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Results

In the toy simulation, the estimated relative contributions of sources to the mixture were mod-

erately correlated (�r2 = 0.676, 0.674, 0.675 and 0.676; Table 1, S1 Fig in S1 File). On the other

hand, the β-dependent SIAR exhibited relatively narrow BDP for all sources (23.5–26.4% for

all sources; Table 1, Fig 2). These intervals were much the same as the expected theoretical

intervals (i.e., 23.9–26.0%).

Using the published geese data, the estimated relative contributions of dietary items were

weakly correlated (�r2 = 0.186, 0.122, 0.133 and 0.330; Table 1, S2 Fig in S1 File). However,

ΔBDP varies substantially among different sources. Terrestrial grasses had a narrow BDP (5.3–

6.3%), while Enteromorpha spp. had a relatively wide BDP (29.1–38.3%). The BDP of Zostera
and Ulva lactuca were intermediate (55.9–59.2% and 0.0–5.4%, respectively). Interestingly, all

the marginal posterior medians fell outside the BDP (Table 1, Fig 3). We also found that

changing error structure parameterization from SIAR to Stock’s model leads to wider ΔBDP

but improves the consistency between ordinary and beta-dependent marginal posteriors (S1

Table, S3 Fig in S1 File).

Discussion

In our simulation, our method provides the expected theoretical intervals for relative contribu-

tions of each source to the mixture. This confirms that β-dependent posterior distributions

can quantitatively diagnose the underdetermined mixing problem. Because β-dependent pos-

terior probability can be applied even for complex mixing systems, our method balances accu-

rate diagnosability and broad applicability. This is the biggest advantage over previous

methods such as graphical checking, posterior correlation, posterior multi-modality and nor-

malized source polygon area [17–19].

Using the published geese data, we found two problematic aspects of underdetermined

mixing problems highlighted by the analysis of β-dependent SIMM. First, ΔBDP vary among

dietary sources, and the mean determination coefficient from ordinary SIMM cannot quantify

the variation (Table 1, Fig 3). This may not be surprising because the BDPs only depend on the

geometry of the isotopic mixing space, while the mean determination coefficients depend on

both isotopic geometry and other data uncertainties. Second, the marginal posterior medians

of ordinary SIMM are necessarily inconsistent with the joint posterior peaks. In this example,

Table 1. Estimated relative contributions (%) of dietary sources for two motivated examples.

medians 95% CI �r 2 BDP ΔBDP

Toy simulation

Source A 24.1 [1.8, 48.9] 0.676 [23.5, 26.4] 2.9

Source B 25.5 [2.0, 49.1] 0.674 [23.5, 26.4] 2.9

Source C 25.4 [2.1, 49.9] 0.675 [23.5, 26.4] 2.9

Source D 24.6 [2.0, 49.4] 0.676 [23.5, 26.4] 2.9

Field data

Zostera 59.7 [40.0, 81.0] 0.186 [55.9, 59.2] 3.3

Terrestrial grasses 6.9 [2.5, 11.7] 0.122 [5.3, 6.3] 1.0

Ulva lactuca 11.3 [0.6, 34.7] 0.133 [0.0, 5.4] 5.4

Enteromorpha 18.5 [0.9, 48.5] 0.330 [29.1, 38.3] 9.2

The medians, 95% credible intervals (CI) and mean determination coefficient (�r2) are calculated from ordinary SIAR. The BDPs and their widths (ΔBDP) are calculated

from β-dependent SIAR. Note that the expected BDPs of our toy simulation are [23.9, 26.0]. In all analyses, we set β = 1,000 for β-dependent SIAR.

https://doi.org/10.1371/journal.pone.0257818.t001
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all the medians fell outside of the BDPs. This inconsistency was serious for Enteromorpha spp.

whose relative contribution was most underdetermined (Fig 3). It is explained by failing to

approximate marginal posterior distributions to Gaussian distributions [25] due to underde-

termination. Furthermore, the slight difference of model structures may unexpectedly influ-

ence the underdetermination. We found that the Stock’s error parameterization improved the

consistency between ordinary and beta-dependent marginal posteriors at the cost of expand-

ing ΔBDP for published geese dataset. These results emphasize the importance of quantita-

tively diagnosing underdetermination in SIMMs even in seemingly sound mixing spaces.

The serious underdetermined mixing problem results in high correlation and multi-modal-

ity for estimated relative contributions [18]. However, our results showed that these indicators

may be a rough diagnostic. For example, Zostera had higher mean determination coefficient

than those of Ulva lactuca (0.186 vs 0.133), but the inverse relationship was observed for ΔBDP

(0.8% vs 5.3%). The multi-modality cannot even be detected for our examples. Checking corre-

lation and multi-modality should be recognized as a preliminary tool for diagnosing serious

underdetermined problems.

Our method exponentiates not only data probability but also prior probability because our

interest is to diagnose underdetermination of posterior probability. Therefore, our method

inherits the benefits and limitations of Bayesian methods. Specifically, we can utilize the infor-

mation from other investigations (e.g., stomach contents analysis) as informative priors, while

we can obtain trivial results when data has little information. For Bayesian users, it is impor-

tant to understand that underdetermined mixing problems are resolved either by improving

data probability (i.e., additional isotope elements) or by using informative priors. Future

works should aim at determining appropriate priors for underdetermined mixing problems,

although it is beyond the scope of this study.

SIMMs are widely used in stable isotope studies to improve the biological interpretation of

isotope data. However, misinterpretation may result from underdetermined mixing problems,

even in sophisticated field studies. In the case of the Brent geese data, the relative contribution

of Enteromorpha spp. involved high uncertainty due to underdetermination probably because

the isotopic signatures were on the inside of the polygon composed of the other sources. Such

problematic isotopic geometries frequently occur in isotopic studies [26–29], requiring a com-

prehensive discussion of the potential influence of underdetermination on their results. Fur-

thermore, the secondary use of representative estimates for additional analyses is common in

isotopic studies [30, 31]. We provide two recommendations for SIMM users. First, the users

should report the BDPs in addition to results of ordinary SIMMs, and discuss the influence of

underdetermination on their results for sources with moderate ΔBDPs (e.g., ~10%). If inter-

ested sources have large ΔBDPs (e.g., 10%~), more isotope elements should be used to remedy

underdetermined mixing problems [17]. The allowable underdetermination criterion is con-

text-dependent but for most practical cases, the mixing problem with ΔBDP< 10% may have

little influence on the interpretation of SIMM results. Second, the users should not use the

marginal posterior medians and modes for secondary use. Instead, we can use the samples

from posterior distributions of ordinary or β-dependent SIMMs.

Recently, there have been the remarkable developments of biological tracer analysis (e.g.,

compound-specific stable isotopes of amino acids and fatty acids [32]). These developments

should increase the utility and reliability of Bayesian SIMMs. However, we may need to con-

tinue struggling the underdetermined problem because our interest will expand to the system

with more mixing sources and finer resolution (e.g., species-level to population-level). Hope-

fully, our method will contribute to sound interpretation and secondary use of isotopic infor-

mation in many practical settings.
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