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Abstract: 

The paper entails the design of a 16-bit multiplier with the 

combined application of Karatsuba algorithm and the Urdhva-

Tiryagbhyam (UT) theorem and the implementation of the 

multiplier architecture in Modified-Gate-Diffusion-Input 

(Mod-GDI) cells for improving the area and power constraints 

in the proposed novel hybrid multiplier. 
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1. INTRODUCTION 

Multiplication, being one of the four elementary arithmetic 

operations, happens to be one of the most crucial processes for 

an ALU inside a processor. It also finds its use in various digital 

processing operations of varying bit-widths and thus plays the 

role of one of the most important data-paths beside the Adder. 

Binary multiplication however, happens to be one of the most 

complex operations when it comes to the digital design and 

implementation and thereby becomes one of the popular fields 

of research in VLSI. 

The multiplication process [13] in its essence, doesn’t deviate 

much in the binary number system from its decimal equivalent, 

i.e., one of the multiplicands is iteratively multiplied with the 

individual bits of the other in order to generate the partial product 

terms, which are then shifted weight-wise and added to yield the 

final result. The process, seemingly simple and hierarchically 

implementable, requires extensive hardware in actuality and is 

marred by a heavy adder delay. 

We aim to tackle these shortcomings with a combined 

approach of the Karatsuba algorithm and the Urdhva-

Tiryagbhyam (UT) theorem. These algorithms paired with the 

implementation of the design using Modified-Gate-Diffusion-

Input (Mod-GDI) cells provide the proposed multiplier design an 

unprecedented reduction in area and power dissipation.  

The UT theorem efficiently reduces the complexity of the 

mathematical process and improves the speed but doesn’t exactly 

offer a considerable reduction in the overall area. The Karatsuba 

algorithm minimizes the iterative steps in multiplication process 

but still doesn’t simplify the process of multiplication in itself.  

The Gate-Diffusion-Input (GDI) cells offer a minimal-area 

approach for designing the sub-circuits however, they are marred 

by partial swing problems which render them useless in cascaded 

architectures. The shortcomings of the two algorithms can be 

overcome by combining the strengths of both into a novel hybrid 

design implemented using the Mod-GDI based cells which have 

been modified to counter the partial swing problem while taking 

advantage of the minimalism offered by the GDI cells. 

The paper has been organized as follows: Section 2 provides 

a brief survey leading to the current work. Section 3 discusses the 

proposed methodology for the work. Section 4 discusses the 

implementation of the proposed design using Tanner EDA Tools. 

The results of the proposed design have been discussed in section 

5. The conclusion has been offered in section 6. 

2. LITERATURE SURVEY 

A lot many researches have been conducted in the designing 

of better performing multiplier circuits based on different 

algorithms [2]-[8].  

The design of the hybrid multiplier based on the Karatsuba 

algorithm and the UT theorem and its implementation in FPGAs 

has been discussed in [2]. It provides the backbone to our research 

but doesn’t delve deeper into optimization of the used 

methodology as it is restricted, in terms of the tools used, to only 

logical synthesis. 

The comparison of the UT Multiplier architectures with 

hierarchical array multipliers has been provided in [3]. The design 

techniques followed for a multiplier based on the Karatsuba 

algorithm have been described in [4] and [5].  

The design techniques followed for a multiplier based on the 

UT theorem have been described in [6] and [7]. The use of the 

GDI technology for various logical circuits has been presented 

in [8]. 

The designs do improve the different parameters for all these 

architectures however, few of the problematic aspects in all these 

designs are as follows: 

 The UT theorem efficiently reduces the complexity of the 

mathematical process but doesn’t exactly offer a 

considerable reduction in the overall area. 

 The Karatsuba algorithm minimizes the iterative steps in 

multiplication process but still doesn’t simplify the process 

of multiplication in itself. 

 The Gate-Diffusion-Input (GDI) cells offer a minimal-area 

approach for designing the sub-circuits however, they are 

marred by partial swing problems which render them useless 

in cascaded architectures. 

The two algorithmic drawbacks can be overcome by 

combining the strengths of both into a novel hybrid design 

implemented in the Mod-GDI cells which have been modified so 

as to counter the partial swing problem while taking advantage of 

the minimalism offered by the GDI cells. 
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3. METHODOLOGY 

3.1 KARATSUBA ALGORITHM 

 The Karatsuba algorithm [9], [10] is a fast multiplication 

algorithm which was designed by Anatoly Karatsuba in 1960 and 

published in 1962. It reduces the multiplication of two n-digit 

numbers to at most Nlog2
3 (N1.59 single-digit multiplications in 

general). It is therefore faster than the classical algorithm, which 

requires N2 single-digit products. For example, the Karatsuba 

algorithm requires 310 = 59,049 single-digit multiplications to 

multiply two 1024-digit numbers (n = 1024 = 210), whereas the 

classical algorithm requires (210)2 = 1,048,576. 

Considering two 16-bits wide binary variables, X and Y for the 

example. The numbers are broken down as follows into the two 

significant halves: 

 X = XH  28 + XL (1) 

 Y = YH  28 + YL (2) 

where, XH and YH represent the two most significant halves of X 

and Y respectively while XL and YL represent their two least 

significant halves. Hence, 

 XY = (XH  28 + XL)(YH  28 + YL)  (3) 

The above expression shows the multiplication of the two 

binary numerals and when expanded they yield four 

multiplication terms, each N-bits wide as shown below: 

 A = XHYH (4) 

 B = XHYL +XL YH (5) 

 C = XLYL (6) 

 XY = A216 + B28 + C (7) 

where, A, B and C represent the three combinatorial expressions. 

A and C each require one multiplier while B requires two.  

So, the long multiplication technique here requires a total of 

four 8-bit multipliers for proper implementation. However, going 

by the Karatsuba approach, the multiplication terms shall be 

reduced by substituting one stage of multiplier with adders and 

subtractors as follows: 

 B = (XH+XL)(YH +YL) - A - C = B (8) 

Here, B represents an alternative manner of representing the 

same term B with the calculation of just one multiplication term 

as opposed to the two terms in case of B. 

 XY = A216 + B28 + C (9) 

The above expression depicts the numerical representation of 

the Karatsuba algorithm involving the calculation of three 

multiplicands as opposed to the four required in case of any 

classical approach.  

Mathematically, the Karatsuba algorithm thus effectively 

reduces the operational overheads of the multiplier in terms of 

area and power. However, the algorithm alone doesn’t really 

simplify the design of the multiplier core in the design. It has been 

used in conjunction with UT theorem for designing the multiplier 

cores in the proposed hybrid design. 

3.2 URDHVA-TIRYAGBHYAM THEOREM 

 The UT theorem [11], [12] is a useful tool in Vedic 

Mathematics employed in the multiplication of two numbers in 

the decimal number system. Even though the UT theorem had 

been developed for the decimal number system, the theorem 

appropriately fits the binary number system as well. In the 

proposed design, we apply the same ideas to the binary number 

system, in 8-bits, to make the proposed algorithm compatible with 

the digital hardware. The name of the theorem literally translates 

to “vertically and crosswise” from Sanskrit. The Fig.2 shows the 

generation of the term ‘G’ according to the UT theorem and the 

rest of the terms are shown in the equation below, 

D = A0B0 

E = A0B1 +A1B0 

F = A0B2 +A1B1 + A2B0 

G = A0B3 +A1B2 + A2B1 + A3B0 

H = A0B4 +A1B3 + A2B2 + A3B1+ A4B0 

I = A0B5 + A1B4 + A2B3 + A3B2 + A4B1 + A5B0 

J = A0B6 + A1B5 + A2B4 + A3B3 + A4B2 + A5B1 + A6B0 

K = A0B7 + A1B6 + A2B5 + A3B4 + A4B3 + A5B2 + A6B1 + A7B0 

L = A1B7 + A2B6 + A3B5 + A4B4 + A5B3 + A6B2 + A7B1 

M = A2B7 + A3B6 + A4B5 + A5B4 + A6B3 + A7B2 

N = A3B7 + A4B6 + A5B5 + A6B4 + A7B3 

O = A4B7 + A5B6 + A6B5 + A7B4 

P = A5B7 + A6B6 + A7B5 

Q = A6B7 + A5B6 

R = A7B7 (10) 

 

Fig.1. Generation of term ‘G’ 

The implementation of the partial product terms generated 

thusly can be done by using an array of AND gates and adders. 

The terms shall have variable bit-widths with ‘K’ being the 

widest, with a bit-width of 4 bits. 

The Table.1 serves as an easy tool for easily and minimally 

realizing the combinational logic for the summing of the partial 

product terms so as to generate the final products. The C’s 

represent the carry terms and actually depict a symbolic collective 

carry from all the previous stages of addition. Finally, the product 

is obtained as X16-bits. 

However, one important consideration to be taken care of is 

that the additive product in case of B in Eq.(8) can have more 

than 8-bits which would render this multiplier design for 8-bits, 

useless. Hence, the multiplier that generates the product B has to 

process 9-bit multiplicands. The design of this 9-bit multiplier 

would be exactly like the 8-bit multiplier explained so far but 

would require a few extra components and would be slightly 

larger in area. It would not even compare with the addition of a 

whole extra multiplier though, as in the traditional approach 

without employing the Karatsuba algorithm. 
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Table.1. Grid representation of partial product addition 

               D 

            C E1 E0  

          C C F1 F0   

         C G2 G1 G0    

        C H2 H1 H0     

       C I2 I1 I0      

     C C J2 J1 J0       

     K3 K2 K1 K0        

    C L2 L1 L0         

   C M2 M1 M0          

  C N2 N1 N0           

  O2 O1 O0            

 C P1 P0             

 Q1 Q0              

C R               

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0 

3.3 MODIFIED GDI CELLS 

 The GDI design technique [1] was introduced as a promising 

alternative to the CMOS logic design style. GDI methodology 

allows implementation of a wide range of complex logic functions 

using merely two transistors. 

 The Fig.2.(a) shows the basic construction of a GDI cell. The 

designs have been implemented in 180nm technology with a 

Wp/Wn ratio of 3, for fairly equal rise and fall times. In 

conventional GDI cells, the gates of the PMOS and NMOS 

devices are shorted together to act as an input G, the sources 

terminals are individually shorted with the respective substrates 

to yield the P and N terminals. 

 

(a) 

 

(b) 

Fig.2. (a) A GDI cell vs (b) A modified GDI cell 

The simple configuration of mere two MOSFETs is capable 

of producing many complex logic functions. However, there’s a 

certain caveat of partial swing in GDI cells which renders them 

practically unusable for any cascade connection with other gates. 

It also leads to wild harmonics in the output signals which 

dissipate more power than saved. Hence, the actual utility requires 

a few tiny modifications to the basic GDI cell design as evident in 

the Fig.2.(b), while the functionality remains the same. The 

implementation of the basic logic gates using the Mod-GDI cells 

has been shown in Fig.3. 

4. IMPLEMENTATION 

Implementation of the sub-circuits has been carries out using 

the Mod-GDI cells. Although the Mod-GDI cells do have a better 

response and lower harmonics than GDI cells but they still have 

the partial swing problem which needs to be addressed for the 

individual sub-circuits.  

 

(a) 
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(b) 

 

(c) 

 

 

(d) 

 

(e) 

Fig.3. Implementation of basic logic gates in Mod-GDI logic (a) 

Inverter, (b) AND, (c) OR, (d) XOR, (e) XNOR 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig.4. Implementation of adder and subtractor blocks (a) Half-

adder (b) Half-subtractor (c) Full-adder (d) Full-subtractor 

The Fig.3 represents the various basic logic gates. The gates 

have been optimized in Mod-GDI logic for minimum transistor 

count while maintaining a full-swing output. 

The Fig.4 depicts the implementation of the adder and 

subtractor blocks using the basic gates constructed in Fig.4. The 

consideration again is to use minimal transistor count for full-

swing at output. The Table.2 shows a comparative analysis of 

transistor count for CMOS vs Mod-GDI. 

Table.2. CMOS vs. Mod-GDI Cells 

Function CMOS Mod-GDI Cells 

Inverter 2 2 

OR* 6 5 

AND 4 3 

XOR 12 4 

XNOR 12 4 

Half-Adder* 22 12 

Half-Subtractor* 22 12 

Full-Adder* 54 20 

Full-Subtractor* 54 20 

*Inverters considered inherent in the circuit 

The final UT multiplier architecture has been shown in the 

Fig. 5. It represents the generic UT multiplier architecture for the 

two kinds of multiplier cores: the 8-bit multiplier core, of which 

two instances shall be used in the final design to yield the A and 

C terms from Eq.(8) while the term B shall be calculated using 

the 9-bit multiplier core. 

 

Fig.5. Generic UT Multiplier Architecture 

 

Fig.6. Proposed 16-bit multiplier architecture 

Lastly, the results from these multipliers have to be processed 

as per the Eq.(8), to yield the final product. The basic ripple carry 

adders have been used in the design for this purpose using the 

adder and subtractor cells designed in Fig.4. The final proposed 

multiplier architecture has been shown in the Fig.6. 

5. SIMULATION RESULTS AND DISCUSSION 

The architecture has been implemented in T-Spice v16.0 at 

180nm technology. The Fig.8 shows the simulation output of the 

proposed 16-bit multiplier for an input combination of all 0’s as 

well as all 1’s, with a 50% duty-cycle pulse for all the input 

signals. The simulation graph signals are highlighted at 1.8V i.e., 

at the high-state in dark to show the output of the multiplier for 

the all 1’s input combination. 
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Fig.7. Simulation results for an input combination of all 1’s 

Table.3. Comparative analysis of multipliers 

Multipliers 
MOS-

FETs 

Power 

mW 

Delay 

ns 

PDP 

pJ 

EDP 

10-21Js 

CMOS Hierarchical Array 

Multiplier (CHAM) [3] 
15776 5.79 24.57 142.28 3495 

CMOS UT Multiplier 

(CUTM) [3] 
12864 4.64 22.58 104.77 2366 

Mod-GDI K-UT 

Multiplier (MGKUTM)* 6077 2.98 19.96 59.48 1187 

*Proposed multiplier 

The proposed multiplier architecture has been tested with 

numerous pseudorandom inputs for the calculation of the worst-

case power and delay values. It has been found to yield conducive 

results for all the test inputs. The Table.3 presents a comparative 

analysis of the proposed Mod-GDI Karatsuba-UT Multiplier 

(MGKUTM) with a CMOS UT Multiplier (CUTM) as well as a 

CMOS Hierarchical Array Multiplier (CHAM). 

 

Fig.8. Comparison of percentage improvements in various 

parameters of CUTM and MGKUTM over CHAM 

6. CONCLUSION 

 From the results obtained in the Table.3 and Fig.8, it has been 

effectively proved that our proposed multiplier design works 

better than the other designs in terms of all the parameters in 

comparison. The most prominent improvement achieved over 

other designs has been in terms of the area or transistor count. The 

proposed hybrid multiplier design has thus effectively reduced the 

area-constraints and also reduced the power consumption of the 

multiplier unit while the speed of operation has also been 

marginally improved. 
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