
BOBBY NELSON AND RAVI TIWARI: A 16-BIT HIGH-SPEED MULTIPLIER DESIGN BASED ON KARATSUBA ALGORITHM AND URDHVA-TIRYAGBHYAM THEOREM USING

MODIFIED GDI CELLS FOR LOW POWER AND AREA CONSTRAINTS

DOI: 10.21917/ijme.2017.0071

398

A 16-BIT HIGH-SPEED MULTIPLIER DESIGN BASED ON KARATSUBA

ALGORITHM AND URDHVA-TIRYAGBHYAM THEOREM USING MODIFIED GDI

CELLS FOR LOW POWER AND AREA CONSTRAINTS

Bobby Nelson1 and Ravi Tiwari2

Department of Electronics and Communication Engineering, Shri Shankaracharya Technical Campus, India

Abstract:

The paper entails the design of a 16-bit multiplier with the

combined application of Karatsuba algorithm and the Urdhva-

Tiryagbhyam (UT) theorem and the implementation of the

multiplier architecture in Modified-Gate-Diffusion-Input

(Mod-GDI) cells for improving the area and power constraints

in the proposed novel hybrid multiplier.

Keywords:

Area-Efficient, GDI, Karatsuba Algorithm, Multiplier, Urdhva-

Tiryagbhyam Theorem

1. INTRODUCTION

Multiplication, being one of the four elementary arithmetic

operations, happens to be one of the most crucial processes for

an ALU inside a processor. It also finds its use in various digital

processing operations of varying bit-widths and thus plays the

role of one of the most important data-paths beside the Adder.

Binary multiplication however, happens to be one of the most

complex operations when it comes to the digital design and

implementation and thereby becomes one of the popular fields

of research in VLSI.

The multiplication process [13] in its essence, doesn’t deviate

much in the binary number system from its decimal equivalent,

i.e., one of the multiplicands is iteratively multiplied with the

individual bits of the other in order to generate the partial product

terms, which are then shifted weight-wise and added to yield the

final result. The process, seemingly simple and hierarchically

implementable, requires extensive hardware in actuality and is

marred by a heavy adder delay.

We aim to tackle these shortcomings with a combined

approach of the Karatsuba algorithm and the Urdhva-

Tiryagbhyam (UT) theorem. These algorithms paired with the

implementation of the design using Modified-Gate-Diffusion-

Input (Mod-GDI) cells provide the proposed multiplier design an

unprecedented reduction in area and power dissipation.

The UT theorem efficiently reduces the complexity of the

mathematical process and improves the speed but doesn’t exactly

offer a considerable reduction in the overall area. The Karatsuba

algorithm minimizes the iterative steps in multiplication process

but still doesn’t simplify the process of multiplication in itself.

The Gate-Diffusion-Input (GDI) cells offer a minimal-area

approach for designing the sub-circuits however, they are marred

by partial swing problems which render them useless in cascaded

architectures. The shortcomings of the two algorithms can be

overcome by combining the strengths of both into a novel hybrid

design implemented using the Mod-GDI based cells which have

been modified to counter the partial swing problem while taking

advantage of the minimalism offered by the GDI cells.

The paper has been organized as follows: Section 2 provides

a brief survey leading to the current work. Section 3 discusses the

proposed methodology for the work. Section 4 discusses the

implementation of the proposed design using Tanner EDA Tools.

The results of the proposed design have been discussed in section

5. The conclusion has been offered in section 6.

2. LITERATURE SURVEY

A lot many researches have been conducted in the designing

of better performing multiplier circuits based on different

algorithms [2]-[8].

The design of the hybrid multiplier based on the Karatsuba

algorithm and the UT theorem and its implementation in FPGAs

has been discussed in [2]. It provides the backbone to our research

but doesn’t delve deeper into optimization of the used

methodology as it is restricted, in terms of the tools used, to only

logical synthesis.

The comparison of the UT Multiplier architectures with

hierarchical array multipliers has been provided in [3]. The design

techniques followed for a multiplier based on the Karatsuba

algorithm have been described in [4] and [5].

The design techniques followed for a multiplier based on the

UT theorem have been described in [6] and [7]. The use of the

GDI technology for various logical circuits has been presented

in [8].

The designs do improve the different parameters for all these

architectures however, few of the problematic aspects in all these

designs are as follows:

 The UT theorem efficiently reduces the complexity of the

mathematical process but doesn’t exactly offer a

considerable reduction in the overall area.

 The Karatsuba algorithm minimizes the iterative steps in

multiplication process but still doesn’t simplify the process

of multiplication in itself.

 The Gate-Diffusion-Input (GDI) cells offer a minimal-area

approach for designing the sub-circuits however, they are

marred by partial swing problems which render them useless

in cascaded architectures.

The two algorithmic drawbacks can be overcome by

combining the strengths of both into a novel hybrid design

implemented in the Mod-GDI cells which have been modified so

as to counter the partial swing problem while taking advantage of

the minimalism offered by the GDI cells.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2017, VOLUME: 03, ISSUE: 02

399

3. METHODOLOGY

3.1 KARATSUBA ALGORITHM

 The Karatsuba algorithm [9], [10] is a fast multiplication

algorithm which was designed by Anatoly Karatsuba in 1960 and

published in 1962. It reduces the multiplication of two n-digit

numbers to at most Nlog2
3 (N1.59 single-digit multiplications in

general). It is therefore faster than the classical algorithm, which

requires N2 single-digit products. For example, the Karatsuba

algorithm requires 310 = 59,049 single-digit multiplications to

multiply two 1024-digit numbers (n = 1024 = 210), whereas the

classical algorithm requires (210)2 = 1,048,576.

Considering two 16-bits wide binary variables, X and Y for the

example. The numbers are broken down as follows into the two

significant halves:

 X = XH  28 + XL (1)

 Y = YH  28 + YL (2)

where, XH and YH represent the two most significant halves of X

and Y respectively while XL and YL represent their two least

significant halves. Hence,

 XY = (XH  28 + XL)(YH  28 + YL) (3)

The above expression shows the multiplication of the two

binary numerals and when expanded they yield four

multiplication terms, each N-bits wide as shown below:

 A = XHYH (4)

 B = XHYL +XL YH (5)

 C = XLYL (6)

 XY = A216 + B28 + C (7)

where, A, B and C represent the three combinatorial expressions.

A and C each require one multiplier while B requires two.

So, the long multiplication technique here requires a total of

four 8-bit multipliers for proper implementation. However, going

by the Karatsuba approach, the multiplication terms shall be

reduced by substituting one stage of multiplier with adders and

subtractors as follows:

 B = (XH+XL)(YH +YL) - A - C = B (8)

Here, B represents an alternative manner of representing the

same term B with the calculation of just one multiplication term

as opposed to the two terms in case of B.

 XY = A216 + B28 + C (9)

The above expression depicts the numerical representation of

the Karatsuba algorithm involving the calculation of three

multiplicands as opposed to the four required in case of any

classical approach.

Mathematically, the Karatsuba algorithm thus effectively

reduces the operational overheads of the multiplier in terms of

area and power. However, the algorithm alone doesn’t really

simplify the design of the multiplier core in the design. It has been

used in conjunction with UT theorem for designing the multiplier

cores in the proposed hybrid design.

3.2 URDHVA-TIRYAGBHYAM THEOREM

 The UT theorem [11], [12] is a useful tool in Vedic

Mathematics employed in the multiplication of two numbers in

the decimal number system. Even though the UT theorem had

been developed for the decimal number system, the theorem

appropriately fits the binary number system as well. In the

proposed design, we apply the same ideas to the binary number

system, in 8-bits, to make the proposed algorithm compatible with

the digital hardware. The name of the theorem literally translates

to “vertically and crosswise” from Sanskrit. The Fig.2 shows the

generation of the term ‘G’ according to the UT theorem and the

rest of the terms are shown in the equation below,

D = A0B0

E = A0B1 +A1B0

F = A0B2 +A1B1 + A2B0

G = A0B3 +A1B2 + A2B1 + A3B0

H = A0B4 +A1B3 + A2B2 + A3B1+ A4B0

I = A0B5 + A1B4 + A2B3 + A3B2 + A4B1 + A5B0

J = A0B6 + A1B5 + A2B4 + A3B3 + A4B2 + A5B1 + A6B0

K = A0B7 + A1B6 + A2B5 + A3B4 + A4B3 + A5B2 + A6B1 + A7B0

L = A1B7 + A2B6 + A3B5 + A4B4 + A5B3 + A6B2 + A7B1

M = A2B7 + A3B6 + A4B5 + A5B4 + A6B3 + A7B2

N = A3B7 + A4B6 + A5B5 + A6B4 + A7B3

O = A4B7 + A5B6 + A6B5 + A7B4

P = A5B7 + A6B6 + A7B5

Q = A6B7 + A5B6

R = A7B7 (10)

Fig.1. Generation of term ‘G’

The implementation of the partial product terms generated

thusly can be done by using an array of AND gates and adders.

The terms shall have variable bit-widths with ‘K’ being the

widest, with a bit-width of 4 bits.

The Table.1 serves as an easy tool for easily and minimally

realizing the combinational logic for the summing of the partial

product terms so as to generate the final products. The C’s

represent the carry terms and actually depict a symbolic collective

carry from all the previous stages of addition. Finally, the product

is obtained as X16-bits.

However, one important consideration to be taken care of is

that the additive product in case of B in Eq.(8) can have more

than 8-bits which would render this multiplier design for 8-bits,

useless. Hence, the multiplier that generates the product B has to

process 9-bit multiplicands. The design of this 9-bit multiplier

would be exactly like the 8-bit multiplier explained so far but

would require a few extra components and would be slightly

larger in area. It would not even compare with the addition of a

whole extra multiplier though, as in the traditional approach

without employing the Karatsuba algorithm.

BOBBY NELSON AND RAVI TIWARI: A 16-BIT HIGH-SPEED MULTIPLIER DESIGN BASED ON KARATSUBA ALGORITHM AND URDHVA-TIRYAGBHYAM THEOREM USING

MODIFIED GDI CELLS FOR LOW POWER AND AREA CONSTRAINTS

400

Table.1. Grid representation of partial product addition

 D

 C E1 E0

 C C F1 F0

 C G2 G1 G0

 C H2 H1 H0

 C I2 I1 I0

 C C J2 J1 J0

 K3 K2 K1 K0

 C L2 L1 L0

 C M2 M1 M0

 C N2 N1 N0

 O2 O1 O0

 C P1 P0

 Q1 Q0

C R

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

3.3 MODIFIED GDI CELLS

 The GDI design technique [1] was introduced as a promising

alternative to the CMOS logic design style. GDI methodology

allows implementation of a wide range of complex logic functions

using merely two transistors.

 The Fig.2.(a) shows the basic construction of a GDI cell. The

designs have been implemented in 180nm technology with a

Wp/Wn ratio of 3, for fairly equal rise and fall times. In

conventional GDI cells, the gates of the PMOS and NMOS

devices are shorted together to act as an input G, the sources

terminals are individually shorted with the respective substrates

to yield the P and N terminals.

(a)

(b)

Fig.2. (a) A GDI cell vs (b) A modified GDI cell

The simple configuration of mere two MOSFETs is capable

of producing many complex logic functions. However, there’s a

certain caveat of partial swing in GDI cells which renders them

practically unusable for any cascade connection with other gates.

It also leads to wild harmonics in the output signals which

dissipate more power than saved. Hence, the actual utility requires

a few tiny modifications to the basic GDI cell design as evident in

the Fig.2.(b), while the functionality remains the same. The

implementation of the basic logic gates using the Mod-GDI cells

has been shown in Fig.3.

4. IMPLEMENTATION

Implementation of the sub-circuits has been carries out using

the Mod-GDI cells. Although the Mod-GDI cells do have a better

response and lower harmonics than GDI cells but they still have

the partial swing problem which needs to be addressed for the

individual sub-circuits.

(a)

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2017, VOLUME: 03, ISSUE: 02

401

(b)

(c)

(d)

(e)

Fig.3. Implementation of basic logic gates in Mod-GDI logic (a)

Inverter, (b) AND, (c) OR, (d) XOR, (e) XNOR

(a)

(b)

BOBBY NELSON AND RAVI TIWARI: A 16-BIT HIGH-SPEED MULTIPLIER DESIGN BASED ON KARATSUBA ALGORITHM AND URDHVA-TIRYAGBHYAM THEOREM USING

MODIFIED GDI CELLS FOR LOW POWER AND AREA CONSTRAINTS

402

(c)

(d)

Fig.4. Implementation of adder and subtractor blocks (a) Half-

adder (b) Half-subtractor (c) Full-adder (d) Full-subtractor

The Fig.3 represents the various basic logic gates. The gates

have been optimized in Mod-GDI logic for minimum transistor

count while maintaining a full-swing output.

The Fig.4 depicts the implementation of the adder and

subtractor blocks using the basic gates constructed in Fig.4. The

consideration again is to use minimal transistor count for full-

swing at output. The Table.2 shows a comparative analysis of

transistor count for CMOS vs Mod-GDI.

Table.2. CMOS vs. Mod-GDI Cells

Function CMOS Mod-GDI Cells

Inverter 2 2

OR* 6 5

AND 4 3

XOR 12 4

XNOR 12 4

Half-Adder* 22 12

Half-Subtractor* 22 12

Full-Adder* 54 20

Full-Subtractor* 54 20

*Inverters considered inherent in the circuit

The final UT multiplier architecture has been shown in the

Fig. 5. It represents the generic UT multiplier architecture for the

two kinds of multiplier cores: the 8-bit multiplier core, of which

two instances shall be used in the final design to yield the A and

C terms from Eq.(8) while the term B shall be calculated using

the 9-bit multiplier core.

Fig.5. Generic UT Multiplier Architecture

Fig.6. Proposed 16-bit multiplier architecture

Lastly, the results from these multipliers have to be processed

as per the Eq.(8), to yield the final product. The basic ripple carry

adders have been used in the design for this purpose using the

adder and subtractor cells designed in Fig.4. The final proposed

multiplier architecture has been shown in the Fig.6.

5. SIMULATION RESULTS AND DISCUSSION

The architecture has been implemented in T-Spice v16.0 at

180nm technology. The Fig.8 shows the simulation output of the

proposed 16-bit multiplier for an input combination of all 0’s as

well as all 1’s, with a 50% duty-cycle pulse for all the input

signals. The simulation graph signals are highlighted at 1.8V i.e.,

at the high-state in dark to show the output of the multiplier for

the all 1’s input combination.

ISSN: 2395-1680 (ONLINE) ICTACT JOURNAL ON MICROELECTRONICS, JULY 2017, VOLUME: 03, ISSUE: 02

403

Fig.7. Simulation results for an input combination of all 1’s

Table.3. Comparative analysis of multipliers

Multipliers
MOS-

FETs

Power

mW

Delay

ns

PDP

pJ

EDP

10-21Js

CMOS Hierarchical Array

Multiplier (CHAM) [3]
15776 5.79 24.57 142.28 3495

CMOS UT Multiplier

(CUTM) [3]
12864 4.64 22.58 104.77 2366

Mod-GDI K-UT

Multiplier (MGKUTM)* 6077 2.98 19.96 59.48 1187

*Proposed multiplier

The proposed multiplier architecture has been tested with

numerous pseudorandom inputs for the calculation of the worst-

case power and delay values. It has been found to yield conducive

results for all the test inputs. The Table.3 presents a comparative

analysis of the proposed Mod-GDI Karatsuba-UT Multiplier

(MGKUTM) with a CMOS UT Multiplier (CUTM) as well as a

CMOS Hierarchical Array Multiplier (CHAM).

Fig.8. Comparison of percentage improvements in various

parameters of CUTM and MGKUTM over CHAM

6. CONCLUSION

 From the results obtained in the Table.3 and Fig.8, it has been

effectively proved that our proposed multiplier design works

better than the other designs in terms of all the parameters in

comparison. The most prominent improvement achieved over

other designs has been in terms of the area or transistor count. The

proposed hybrid multiplier design has thus effectively reduced the

area-constraints and also reduced the power consumption of the

multiplier unit while the speed of operation has also been

marginally improved.

REFERENCES

[1] A. Morgenshtein, A. Fish and I. Wagner, “Gate-Diffusion

Input (GDI): A Power-Efficient Method for Digital

Combinatorial Circuits”, IEEE Transactions on Very Large

Scale Integration Systems, Vol. 10, No. 5, pp. 566-581,

2002.

[2] S. Arish and R.K. Sharma, “An Efficient Binary Multiplier

Design for High Speed Applications using Karatsuba

Algorithm and Urdhva-Tiryagbhyam Algorithm”,

Proceedings of Global Conference on Communication

Technologies, pp. 192-196, 2015.

[3] Arushi Somani, Dheeraj Jain, Sanjay Jaiswal, Kumkum

Verma and Swati Kasht, “Compare Vedic Multipliers with

Conventional Hierarchical array of array multiplier”,

International Journal of Computer Technology and

Electronics Engineering, Vol. 2, No. 6, pp. 52-55, 2012.

[4] Anand Mehta, C.B. Bidhul, Sajeevan Joseph and P.

Jayakrishnan, “Implementation of Single Precision Floating

Point Multiplier using Karatsuba Algorithm”, Proceedings

of International Conference on Green Computing,

Communication and Conservation of Energy, pp. 254-256,

2013.

[5] C. Eyupoglu, “Performance Analysis of Karatsuba

Multiplication Algorithm for Different Bit Lengths”,

Procedia-Social and Behavioral Sciences, Vol. 195, pp.

1860-1864, 2015.

[6] K. Narendra and S. Pandu, “Low Power Area-Efficient

Adiabatic Vedic Multiplier”, International Journal of

Advanced Research in Electrical, Electronics and

Instrumentation Engineering, Vol. 3, No. 8, pp. 11027-

11032, 2014.

[7] A.M. Kareem and P. Kumar, “VLSI Implementation of High

Speed-Low Power-Area Efficient Multiplier Using

Modified Vedic Mathematical Techniques”, Recent Patents

on Computer Science, Vol. 9, No. 3, pp. 216-221, 2017.

[8] S. Kaur and B. Singh, “Design and Performance Analysis of

Various Adders and Multipliers using GDI Technique”,

International Journal of VLSI Design and Communication

Systems, Vol. 6, No. 5, pp. 45-56, 2015.

[9] Paul Zimmermann and Richard P. Brent, “Modern

Computer Arithmetic”, Cambridge University Press, 2011.

[10] Keith O. Geddes, Stephen R. Czapor and George Labahn,

“Algorithms for Computer Algebra”, Springer, 1992.

[11] A.P. Nicholas, K. Williams and J. Pickles, “Vertically and

Crosswise”, Inspiration Books, 2010.

[12] K. Williams and M. Gaskell, “The Cosmic Computer”,

Inspiration Books, 1997.

[13] Neil Weste and David Harris, “Principles of CMOS VLSI

Design”, 4th Edition, Pearson, 2011.

0

10

20

30

40

50

60

70

Area Power Delay PDP EDP

%
 I

m
p

r
o

v
e
m

e
n

t
o

v
e
r
 C

H
A

M

