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ABSTRACT 
 

The diameters and heights of the trees are two of the most important measurements in a forest 
inventory for biomass estimation and sustainable management. Measuring tree height in a forest 
stand is time consuming and costly, it is necessary to develop models that accurately estimate tree 
heights from easily measured variables (tree diameter). This study aims to develop models for 
estimating tree height in a forest plantation located in North-central, Nigeria. The systematic 
sampling method was used to twenty-one 0.09 ha sample plots in study area. Data on tree height 
and diameter were collected.  Artificial neural network (ANN) model, support vector regression 
(SVR) model, and four empirical nonlinear models were tested for estimating tree height. The 
models were evaluated using the Coefficient of Determination, Residual standard Error, Mean Bias 
and Akaike’s Information Criterion. The results showed that the SVR model best predicted tree 
heights in the study area than the ANN and empirical nonlinear models. The SVR model explained 
about 94% variance associating with the dependent variable. The SVR model can be conveniently 
used for predicting the height of trees in the study area. 
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1. INTRODUCTION 
 
Tree height and diameter at breast height (DBH) 
are the two key factors in tree growth models. 
Tree height, however, is more difficult to 
measure in the field than DBH. Both observer 
error and visual obstacles frequently have an 
impact on tree height measurement [1,2]. Tree 
height and DBH have an allometric relationship, 
and this relationship is valuable and frequently 
used in stand-level planning for alternative 
silviculture techniques and efficient monitoring 
[3,4]. Thus, tree height can be reliably                    
estimated using DBH. Reliable tree height 
prediction is essential for estimating                        
above ground biomass and carbon, yield 
modelling, and compilation of forest inventories 
[5,6,7].  
 
The lack of data on tree height in tropical forests 
is caused by the challenge of measuring tree 
height in closed-canopy forests, including the 
associated time and cost requirements of the 
measurement [8]. In carbon-accounting 
programmes, tree height is frequently overlooked 
due to the challenges in data acquisition [9], 
which could lead to increased bias. This tree 
height data acquisition problem can be solved by 
using height-diameter models [10,11].  
 
A nonlinear function is widely used to model the 
relationship between the height and diameter of 
trees. Different researchers have fitted height-
diameter models using the least squares 
regression method [12], Neural networks [13,14], 
mixed-effect regression [15,16,17], quantile 
regression [18], and reduced major axis 
regression [19]. Ogana [20] worked on Tree 
height prediction models for two forest reserves 
in Nigeria using mixed-effects approach.  Ogana 

[21] also modeled height‑diameter relationships 
in complex tropical rain forest ecosystems using 
deep learning algorithm. However, there is no 
published work on modeling H-D of trees in Tar-
ukpe forest plantation in north-central Nigeria, 
using artificial intelligence models. Limited 
studies have been carried out to facilitate the 
management of the forest for optimum growth 
and yield. To facilitate the adoption of best 
practices for sustainable forest management, 
climate change mitigation, and environmental 
resilience in the study plantation, this                             
study was carried out to development a  model 
for estimating the height of trees in the 
plantation. 

2. MATERIALS AND METHODS 
 

2.1 Study Area 
 

The Tar-Ukpe forest plantation (between 
7°21ʹ25.2ʹʹ N, 7°21ʹ50.4ʹʹ N and 9°2ʹ30.8ʹʹ E, 
9°3ʹ7.2ʹʹ E, Fig. 1) is located in Yandev, Gboko 
Local Government Area of Benue State, North-
Central Nigeria. The forest covers approximately 
about 35.3 hectares. The plantation is a mixed 
species stand of predominantly Gmelina arborea, 
Daniellia oliverii, and Tectona grandis, tree 
species. There are two distinct seasons in the 
study area's climate: the rainy season and the 
dry season. The rainy season lasts from April to 
October, and the dry season is from                   
November to March. The Tar-Ukpe                  
Forest plantation falls within the Guinea                      
savannah ecological zone of Nigeria, which is 
characterized by mainly woodland with shrubs 
and grasses. 
 

2.2 Data Collection 
 

The systematic sampling method [22] was used 
to allocate 21 sample plots of 0.09 ha in study 
area. A GIS software was used to overlay a 
systematic grid with 21 plot points spaced at 
regular intervals of 133.8 meters on the map of 
the forest plantation [23]. The plots' coordinates 
were taken out and entered a global positioning 
system (Garmin GPSMAP 78) [24]. Using the 
GPS, the plots were then located in the forest, 
and each plot coordinates were retaken at the 
plot center and recorded. Measurements of DBH 
and tree height for all live trees in the sample 
plots with DBH equal to or greater than 10 cm, 
were taken.  Tree height was measured using 
Spiegel relaskop, and DBH was measured using 
the diameter tape. 
 

2.3 Data Analysis 
 

The data collected were partitioned into model 
fitting (80%) and model validation (20%) data 
sets. The nature of the relationship between the 
tree height and DBH variables was assessed 
using a scatter plot. The R program software 
(version 4.1.1) was used to analyze all the data. 
Four common nonlinear models (Table 1) 
including Power [25], Richards [26], Chapman 
[27], Logistics [28], and Weibull [28] models were 
fitted to the fitting data. The "nls function" in the 
R software was used to fit the models. The 
starting values for the model was determined 
using the “startHDpower, startHDrichards, 
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startHDlogistic and startHDweibull” function of 
the “lmfor” package in R [29]. 
 
The machine learning algorithms of the Support 
Vector Regression [30] and Artificial Neural 

Network [31] were fitted to the fitting data using 
the "svm function" for SVM in the "e1071 
package" [32] and "neuralnet function" for ANN 
in the "neuralnet package" [33]. 

 

 
 

Fig. 1. A map of Tar-Ukpe forest plantation Gboko LGA 
 

Table 1. A list of candidate height-diameter models 
 
Model Input Equation References 

M. 1 (SVR)   
          

               

 

   

 
Samadianfard et al., [30]. 

M. 2 (ANN)         
 

       Bayat et al., [31]. 

M. 3 (Power)             Arabatzis and Burkhart, [25]. 

M. 4 (Chapman-
Richards) 

                        Richards, [26] and Chapman, 
[27]. 

M. 5 (Logistics)         
 

              
 Zeide, [28]. 

M. 6 (Weibull)                        Yang et al., 1978 and Zeide, 
[28]. 

SVR = Support Vector Regression, ANN = Artificial Neural Network,   = Height,   = Diameter at Breast Height (DBH),     = 

activation function,       = Kernel function for SVR,  = gamma, exp = Exponential, K = Cost,  = epsilon, w = start-weight,   = 
input information of neuron for ANN,  

        are Lagrange multipliers for SVR. 



 
 
 
 

Chenge et al.; Asian J. Res. Agric. Forestry, vol. 9, no. 3, pp. 154-163, 2023; Article no.AJRAF.102594 
 

 

 
157 

 

The models were evaluated using the Adjusted 

coefficient of determination (     
 ), Akaike 

information criterion (AIC), residual standard 
error (RSE) and mean bias (e).  
 

    
                                (1) 

 
                  

  
                   (2) 

 

     
 

 
          

  
               (3) 

 
            

 
                 (4) 

 

Where     
 = Adjusted coefficient of 

determination, n = number of observations, K = 
number of parameters in the model, ln = the 
natural logarithm of a number,   = observed 
height, and   = predicted height. 
 

3. RESULTS 
 
A total of 590 individual trees were sampled, 
which belong to 14 different tree species and 6 
families (Table 2). Gmelina arborea (390), 
Daniellia oliverii (58), and Tectona grandis were 
the most abundant tree species in the forest 
plantation. A stand density of 312 trees per 
hectare was estimated. The DBH of all trees in 
the plantation ranged from 10.2 to 54.7 cm, and 
the height of all trees ranged from 4.0 to 20.5 m. 
The mean DBH and height were 22.9 cm (± 6.6) 
and 11.2 m (± 4.2), respectively. DBH and height 
ranges for the fitting and validation data are 
presented in Table 3. The nature of the 
relationship between the sampled trees as 
visually examined using scatter plots is shown in 
Fig. 2. A nonlinear relationship was observed, 
thus fitting non-linear models to the data was 
appropriate. The results of the parameter 

estimate of all the models are presented in Table 
4, and the model evaluation statistics are 
presented in Table 5. 
 
All parameter estimates for nonlinear functions 

were significant (p 0.05).     
 and RSE values for 

the nonlinear models ranged from 0.821 to 0.923 
and 1.149 to 1.78, respectively. The SVR and 

ANN models had    
  values of 0.94 and 0.924, 

and RSE values of 1.017 and 1.142 respectively. 
The Power (Model 3) showed the poorest fit with 

the lowest     
  (0.821), highest RSE (1.78), and 

highest AIC (1889.557). The SVR (Model 1), 
ANN (Model 2), Chapman-Richards (Model 4), 
Logistics (Model 5), and Weibull (Model 6) had 

higher     
   values and lower RSE as shown in 

Table 5. The nonlinear empirical model with the 
best fit statistics was the logistics (Model 5), 
while the machine learning model with the best fit 
statistics was the SVR model. Overall, the SVR 
model produced the best fitted statistics, followed 
by the ANN model. The curve fit for all tested 
models is displayed in Fig. 3. The validation of all 
the models using the independent validation data 
also showed that SVR model produced the best 
prediction results. 
 
The residual plot for the best nonlinear empirical 
model (Logistics) and the best machine learning 
model (SVR) were examined for outliers, lack of 
fit, and unequal variance. The residual plot, as 
illustrated in Fig. 4, depict approximately 
homogeneous variances of the residuals over the 
full range of predicted values, with zero mean, 
indicating that the assumptions of the regression 
analysis were met, and that the height was well 
predicted across diameter. The normal 
probability (Fig. 4) plot also indicates no 
departures from the assumption of normality for 
errors within the models. 

 

Table 2. Tree species composition in the study area 
 

Species Family Density Relative Density (%) 

Afzeliaafricana Fabaceae 8 1.4 
Anthocleistadjalonensis Gentianaceae 17 2.9 
Daniellaolivera Fabaceae 58 9.8 
Ficussur Moraceae 1 0.2 
Gmelinaarborea Lamiaceae 390 66.1 
Khayasenegalensis Fabaceae 19 3.2 
Lanneaschimperi Anacardiaceae 9 1.5 
Mangiferaindica Anacardiaceae 1 0.2 
Parkiabiglobosa Fabaceae 2 0.3 
Pterocarpuserinaceus Fabaceae 9 1.5 
Sarcocephaluslatifolius Rubiaceae 2 0.3 
Sennasiamea Fabaceae 18 3.1 
Tectonagrandis Lamiaceae 46 7.8 
Vitexdoniana Fabaceae 10 1.7 
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Table 3. Summary statistics of growth variables in the study area 
 
Descriptive Statistics Diameter at Breast Height (cm) Height (m) 

Fitting Validation Total Fitting Validation Total 

Mean 22.81 23.46 22.94 11.1 11.4 11.16 
Minimum 10.2 12.1 10.2 4 4 4 
Maximum 55 50.9 54.7 20.5 19.3 20.5 
Standard Deviation 6.53 7.09 6.64 4.15 4.29 6.64 
Sample Size 472 118 590 472 118 590 

 

 
 

Fig. 2. Scatter plot showing the relationship between Tree Height and Diameter 
 

Table 4. Parameter estimates of Models developed in the Study Area 
 

Model Parameters of Models 

w K B   

Model 1 (SVR) - 1 1 0.1 
Model 2 (ANN) 1 - - - 
 a b c - 
Model 3 (Power) 0.06 1.61 - - 
Model 4 (Chapman-Richards) 38.2 0.04 0.11 - 
Model 5 (Logistics) 24.96 18.69 0.11 - 
Model 6 (Weibull) 24.96 0 2.08 - 

SVR = Support Vector Regression, ANN = Artificial Neural Network,  = gamma, K = Cost,  = epsilon, w = start-

weight,  ,   and   = Parameters 

 
Table 5. Statistics Evaluation for Models developed in the Study Area 

 
Model Fitting (80%) Validation (20%) 

    
  RSE Bias AIC RSE Bias 

M. 1 (SVR) 0.94 1.017 -0.005 - 0.979 -0.057 
M. 2 (ANN) 0.924 1.142 0.000002 - 1.082 -0.065 
M. 3 (Power) 0.821 1.780 -0.098 1889.557 1.896 -0.151 
M. 4 (Chapman-
Richards) 

0.918 1.191 0.027 1512.424 1.219 -0.022 

M. 5 (Logistics) 0.923 1.149 0.009 1478.6 1.118 -0.053 
M. 6 (Weibull) 0.821 1.168 0.014 1494.326 1.153 -0.049 

SVR = Support Vector Regression,ANN = Artificial Neural Network, R
2
 = Coefficient of Determination,RMSE = Root Mean 

Squared Error,AIC = Akaike’s Information Criterion 
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Model 1 (SVR)      Model 2 (ANN) 

 

 
Model 3 (Power)    Model 4 (Chapman-Richards) 

 

 
Model 5 (Logistics)   Model 6 (Weibull) 

 
Fig. 3. Curve fit for all the tested models in the study area 
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Fig. 4. Residuals Scatter plots and Quantiles of Standard Normal Plot 
 

4. DISCUSSION 
 
Accurate tree height prediction is essential for 
the development of forest inventories, yield 
models, management decisions, and the carbon 
budget [6, 7, 34]. Out, of the six tested models, 
the three top-performing models for height 
prediction, were model 1 (SVR), model 2 (ANN), 
and model 5 (Logistics). The power model which 
has been shown to produce good results in some 
previous studies [35,36 & 12] produced the least 
results in this study. 
 
Overall, the SVR model outperformed all other 
models tested for predicting the height of trees in 
the study area. The machine learning models 
(SVR and ANN) tested in this study outperformed 
all the other empirical nonlinear models. This 
indicates the potential of machine learning 
models for tree height-diameter modeling as also 
shown in several other studies [31, 36, 37, & 38]. 
Bayat et al. [31] evaluated ten nonlinear 
functions and the machine learning algorithms 
ANN and ANFIS (Adaptive Neuro-Fuzzy 
Inference System) to fit height-diameter models 
in a mixed unevenly aged forest in Northern Iran 
and found that the machine learning models 
produced the best results. Diamantopoulou and 
Ozçelik [36] evaluated six nonlinear regression 
models and the generalized regression neural 
network (GRNN) technique to estimate tree 
heights in the western Mediterranean Region 
Forests of Turkey. The validation data of their 
models revealed that the GRNN model had both 
greater and lower error rates than all the tested 
nonlinear regression models. Diamantopoulou et 

al. [38], also found the SVR model outperformed 
the GRNN model, nonlinear fixed and mixed 
effects model, and quantile regression model 
evaluated in their study. Lee et al. [39] predicted 
the tree heights of forest stands in South Korea 
using three new machine learning techniques, 
including support vector regression (SVR), 
modified regression trees (RT), and a random 
forest (RF), and found that these three models 
were effective. 
 
Each artificial intelligence and regression model 
used to forecast forest performance has 
advantages and disadvantages of its own. The 
vast range of statistical assumptions, such as the 
independence of the variables and the data's 
normal distribution, are just two of the many 
shortcomings of conventional regression models 
[31]. The fact that artificial intelligence modeling 
techniques typically do not have the same 
limitations as empirical models is one advantage 
of adopting them [40]. For instance, some 
assumptions (such as data normality and others) 
may influence the quality of empirical models 
[41]. Other advantages of artificial intelligence 
systems that are often widely recognized in 
predicting tree heights include the capacity to 
work with qualitative qualities as well as relative 
accuracy and precision [41]. All of these are 
consistent with this research in demonstrating 
the superiority of neural network and artificial 
intelligence methods over regression models, 
despite variations in the types of neural network 
and vector power models utilized in our 
investigations or in the quantities and types of 
model inputs. 
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5. CONCLUSION 
 
Reliable models that can predict crucial aspects 
of the forest, like tree diameters and heights, are 
necessary for forest management. The study 
concludes that in forest modelling, machine 
learning models have the potential to both 
supplement and replace empirical models 
(nonlinear functions). For the cases modelled 
here, the SVR model outperformed all empirical 
models (nonlinear functions) in estimating the 
tree height for the study area, supporting 
previous research on the topic and 
demonstrating that machine learning techniques 
can take the place of empirical models in projects 
requiring the estimation of forest conditions. The 
results in this study show the SVR model is more 
precise, flexible, and better able to model 
complex and nonlinear interfaces. However, a 
given diameter-height model may not always be 
suitable for all types of settings where a 
particular tree species may be found because 
site factors might influence the diameter-height 
connection. 
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