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Abstract
This article presents a new approach to address the resolution of homogeneous linear recurrences of higher order
and interpolation problems. By establishing an explicit formula for the entries of the inverse of generalized
Vandermonde matrices, a fresh perspective on these mathematical challenges is introduced. The study
primarily focuses on linear recurrence relations and thoroughly investigates cases involving characteristic
polynomials with both simple roots and roots of multiplicity. To illustrate the effectiveness and practicality of
the proposed method, a comprehensive set of illustrative examples is provided, highlighting its applicability
in solving a wide range of instances of linear recurrence relations. Additionally, the limitations of the formula
are discussed, particularly in scenarios where its applicability may be restricted. The findings of this study
contribute significantly to the existing literature, providing an alternative and promising approach for solving
problems that rely on the inverse Vandermonde matrix. In conclusion, this article emphasizes the need
for further research to explore the computational advantages of the proposed method and to extend its
applicability to cases featuring characteristic polynomials with a single root of multiplicity greater than one.
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By expanding the knowledge in the field, this study offers valuable insights into the resolution of linear
recurrences and interpolation problems, presenting a new perspective and expanding the existing knowledge
in the field.
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1 Introduction
There are many mathematical problems that calculation depends on to solve a system of linear equations.
Although Babylon used the systems in daily life, the systems of linear equations that we know today arose
in Europe in 1637 by Renê Descartes [1]. He introduced Cartesian Geometry where the lines and planes are
represented by linear equations and computing their intersections amounts to solving a system.

The progress in the studies of systems of linear equations came from determinants. Well-known mathematicians
such as Leibniz and Lagrange in 17th century participated in this development. However, more than 50 years
after Leibniz the results that we use in Linear Algebra were presented by Cramer when he showed how to solve
an n× n system based on determinants [2].

In order for matrix algebra to develop Cayley in 1855 defined matrix multiplication and published the idea of
the identity matrix as well as the inverse of a square matrix, [see more about the History of Systems of Linear
Equation in [3]].

There are several methods for inverting matrices. Most of all methods, in which the solution is a result of a finite
number of arithmetic operations, can be classified as methods of factorization and methods of modification, [4].
The process of inverting a matrix usually is not an easy task, so in order to improve the performance of this task,
some special matrices are individually studied. Our interest is in the Vandermonde matrix. In special cases, the
explicit formula for the entries of inverse of the Vandermonde matrix can be provided, in a classic way, in terms
of determinants, [5].

We call Vandermonde matrix V = (Vi,j) the matrix of order n× n in the form

V =


1 α1 α2

1 . . . αn−1
1

1 α2 α2
2 . . . αn−1

2

1 α3 α2
3 . . . αn−1

3

...
...

...
. . .

...
1 αm α2

m . . . αn−1
m

, (1.1)

or Vi,j = αj−1
i ∈ C, for all 1 ≤ i, j ≤ n. This well-known matrix is important because the elements Vij depends

on the variables α1, . . . , αn, which forms a geometric progression.

The Vandermonde matrix appears in many different circumstances as polynomial interpolation, least square
regression, construction of error-detecting and error-correcting codes, and solving systems of differential equations
with constant coefficients, [see [6] and references therein].

The name of this matrix is devoted to Alexandre Theóphile Vandermonde (1735-1796). His entire mathematical
contribution consisted of four published articles. Especially in the fourth paper, of title Mémorie sur l’elimination,
Vandermonde discusses a general method for solving linear equation systems using alternating functions, but
the Vandermonde matrix is not considered in any of Vandermonde’s works, [see [6] and references therein].
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In fact, the determinant of the Vandermonde matrix, called the Vandermonde determinant, is given by∣∣V ∣∣ =
∏

1≤i<j≤n

(xj − xi), (1.2)

thus |V | 6= 0, which implies that every system involving a Vandermonde matrix has a solution and it is unique.
There are several proofs for Expression (1.2). In a simple way, the formula can be proved by induction on the
order of matrix n, [7]. In the case n = 2, is verified

∣∣V ∣∣ = v1,1v2,2 − v1,2v2,1 = x2 − x1 =
∏

1≤i<j≤2

(xj − xi).

A process for inverting the generalized Vandermonde matrix related to a specific linear difference equation was
established in [8]. In [9] the authors discussed the inversion method presented in [8] from the point of view
of solving some usual difference equations. In addition, the method of inverting a generalized Vandermonde
matrix, using the analytic properties of a fundamental system related to specific linear difference equations, was
provided in [10].

In this context, we establish a study on the resolution of homogeneous linear recurrences of higher order and
interpolation problems via the new method published for inverting the Vandermonde matrix associated with the
Fibonacci fundamental system. Our goal is to discuss the explicit formulas for entries of inverted generalized
Vandermonde matrix presented in [10] and provide a new approach for solving a linear recurrence relation and
interpolation problems, which depends on the process of inverting Vandermonde matrices. For linear recurrence
relation, the three cases are discussed: the polynomial characteristic associated with only simple roots, the
polynomial characteristic associated with two or more roots where at least one of them has multiplicity greater
than one, and the polynomial characteristic associated with one single root with multiplicity greater than one.
We finish establishing that the formula for the case with one single root with multiplicity greater than one is
not applied and the solution is determined in the traditional way.

The content of this paper is organized as follows. In Section 2 the method of inverting the Vandermonde
matrix is presented and the explicit formulas of entries of the matrix are established for when the roots of the
characteristic polynomial associated are simple. Section 3 is devoted to studying the application of the method
to solve an interpolation problem. Section 4 presents the application of the method to solve linear recurrence
relations. Examples concerned with simple roots and roots with multiplicity greater than one are considered.

2 The Inverse of Generalized Vandermonde Matrices

2.1 On invertible matrices
It is well-known the definition of an invertible matrix. Recalling, let A a square matrix of order n, (or n× n,
n lines and n columns) it is defined as the inverse matrix associated to A, the matrix B, of order n such
that AB = BA = Idn where Idn is the identity matrix of order n. If B exist, we say that A is an invertible
matrix.

There are several algorithms to establish the inverse matrix, such as Gaussian elimination, Gauss-Jordan
methods, LU decomposition, and Cholesky decomposition as shown in [11, 12]. The most efficient methods
consist of expressing matrix A as a product of two factors P and Q such as PA = Q, where Q is easily
inverted.

In mathematical terms, if we can describe a problem as an equation to be solved, namely, AX = H, where X
and H are matrices of order n × 1, just find out if A has an inverse. If there is an inverse matrix B, of A,
then the solution of the problem is unique and given by X = BH, solving the problem. In fact, in the study of
problems associated with matrices with a large order n ≥ 100 , the researcher worries about the type of matrix
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and the optimum algorithm for each case. Then, new approaches have great acceptance in the literature, even
if some of them are not great for all types and orders of matrices. For our focus, in the next subsection, we will
discuss the approaches to find the inverse of the Vandermonde matrix.

2.2 On inverse of Vandermonde matrices
There are various types of generalized Vandemonde matrices proposed and studied in the literature. Here we
are considering a generalized Vandermonde matrix V given by the following form

V =


1 0 ... 0 ... 1 0 ... 0
λ1 λ1 ... λ1 ... λs λs ... λs
λ21 2λ21 ... 2m1−1λ21 ... λ2s 2λ2s ... 2ms−1λ2s
...

...
...

...
...

...
λr−1
1 (r − 1)λr−1

1 ... (r − 1)m1−1λr−1
1 ... λr−1

s (r − 1)λr−1
s ... (r − 1)ms−1λr−1

s

 ,
(2.1)

where the entries Vi,j ∈ R, for all 1 ≤ i, j ≤ n.

This matrix can be associated with a recursive problem with linear coefficients where its characteristic polynomial

is p(λ) =

s∏
i=1

(λ−λi)
mi = λr−

r−1∑
i=0

ai·λi. This relationship provided a new perspective for the approaches involving

the Vandermonde matrix using the results in the theory of linear difference equations. The first approach was
shown in [8], where the explicit formulas for the entries of the inverse of Vandermonde matrix were provided
depending on the roots of characteristic polynomial associated. The method was applied for some special cases
in [9] and a new point of view for solving linear recurrence relations was established.

Since the given explicit formulas were derived from results of the generalized Fibonacci sequences, in paper [10]
was established a process for inverting the generalized Vandermonde matrix, using the analytic properties of a
fundamental system, the bases of vectorial space of the generalized Fibonacci sequences. The principal results
are resumed in the theorem below,

[Proposition 2.5 and Proposition 2.6, [10] ]

Let V be a generalized Vandermonde matrix as in equation (2.1), then its inverse is given by,

V −1 =



β
(0)
1,0 β

(1)
1,0 ... β

(r−1)
1,0

...
...

...
β
(0)
1,m1−1 β

(1)
1,m1−1 ... β

(r−1)
1,m1−1

...
...

...
β
(0)
s,0 β

(1)
s,0 ... β

(r−1)
s,0

...
...

...
β
(0)
s,ms−1 β

(1)
s,ms−1 ... β

(r−1)
s,ms−1


, (2.2)

with each entry of the matrix is

β
(r−1)
i,k =

mi−1∑
t=k

s(t, k) · γ
[i]
t (λ1, ..., λs)

t! · λt
i

, (2.3)
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with s(t, k) being the Stirling number of the first kind, namely, the number of permutations on t elements with
k cycles,

s(t, k) =

[
n

k

]
(2.4)

and γ
[i]
k is defined by

γ
[i]
k (λ1, ..., λs) = (−1)r−mi ·

∑
ε
[i]
k

 ∏
i≤j 6=i≤s

(
nj+mj−1

nj

)
(λj − λi)nj+mj

 , (2.5)

where ε[i]k = {(n1, ..., ns) ∈ Ns−1;n1 + ...+ ni−1 + ni+1 + ...+ ns = mi − k − 1}, and

β
(p)
i,j =

p∑
k=0

ar−p−1+k · C(k+1)
i,j , (2.6)

where

C
(d)
i,j = λ−d

i ·
mi−1∑
k=j

(−1)k−jβ
(r−1)
i,k

(
k

j

)
· dk−j , (2.7)

and ai is the coefficients in the characteristic polynomial p(λ) = λr −
∑r−1

i=0 ai · λ
i.

Since many known problems of recursive sequences like Fibonacci sequence or polynomial interpolation problems
might result in a simple Vandermonde matrix, where all the roots of the characteristic polynomial are simple
roots, it is possible to reduce the expressions given in Theorem 2.2.

Let V be a Vandermonde matrix given by

V =


1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2

1 λ3 λ2
3 . . . λn−1

3

...
...

...
. . .

...
1 λm λ2

m . . . λn−1
m

, (2.8)

with λi 6= λj , for all i 6= j, 1 ≤ i, j ≤ n. Then its inverse is given by,

V −1 =



β
(0)
1,0 β

(1)
1,0 ... β

(r−1)
1,0

...
...

...
β
(0)
1,m1−1 β

(1)
1,m1−1 ... β

(r−1)
1,m1−1

...
...

...
β
(0)
s,0 β

(1)
s,0 ... β

(r−1)
s,0

...
...

...
β
(0)
s,ms−1 β

(1)
s,ms−1 ... β

(r−1)
s,ms−1


, (2.9)

with each enter of the matrix given as follows,

β
(r−1)
i,0 =

(−1)r−1∏
0≤j 6=i≤s

(λj − λi)
, (2.10)

β
(p)
i,0 =

p∑
k=0

ar−p−1+k ·
β
(r−1)
i,0

λk+1
i

. (2.11)
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Proof. In fact, consider a characteristic polynomial with r roots, all with multiplicity one, mi = 1, with
1 ≤ i ≤ r, then Equation (2.3) is simplified as follows,

β
(r−1)
i,0 = s(0, 0) · γ

[1]
0 (λ1, ..., λr)

0! · λ0
i

⇒ β
(r−1)
i,0 = γ

[i]
0 (λ1, ..., λr).

Notice the set ε[i]0 is given by the solution of n1 + ...+ni−1 +ni+1 + ...+nr = 0, with nk being a non negative
integer for 1 ≤ k ≤ r, implying ε

[i]
0 = {(0, ..., 0)}. Then, using Equation (2.5),

γ
[i]
0 (λ1, ..., λr) = (−1)r−1 ·

[ (
n1
n1

)
(λ1 − λi)

·
(
n2
n2

)
(λ2 − λi)

· ... ·
(
nr
nr

)
(λr − λi)

]

⇒ γ
[i]
0 (λ1, ..., λr) =

(−1)r−1

(λ1 − λi) · ...(λi−1 − λi) · (λi+1 − λi) · ... · (λr − λi)
.

Following with Equation (2.6) and using the previous results, it is obtained,

β
(p)
i,0 = ar−p−1 · C(1)

i,0 + ...+ ar−1 · C(p+1)
i,0 ,

with coefficients C(d)
i,0 obtained by Equation (2.7),

C
(d)
i,0 = λ−d

i · β
(r−1)
i,0 · d0 ⇒ C

(d)
i,0 = λ−d · β(r−1)

i,0 .

The previous results lead to the following expression,

β
(p)
i,0 = ar−p−1 ·

β
(r−1)
i,0

λi
+ ...+ ar−1 ·

β
(r−1)
i,0

λp+1
i

.

Thus, the entries of the inverse of the Vandermonde matrix are given as shown in equations (2.10) e (2.11).

The Proposition 2.2 show us explicit formulas for inverting a Vandemonde matrix in the case of the recurrence
relation associated has a characteristic polynomial with simple roots. The following sections are devoted to
applying the results of Theorem 2.2 and Proposition 2.2 in order to obtain a new way to discuss an interpolation
problem and recurrence relation. Observe that in Expression (2.5) and Expression (2.10) is not explicit that can
be applied when there is a single root with multiplicity mi.

3 An Interpolation Problem
Consider the given ordered pairs (xi, yi) with 1 ≤ i ≤ n, then the interpolation polynomial problem consists
in finding a polynomial P (x) =

∑n−1
i=0 aix

i with at most degree n − 1 such that P (xi) = yi. In other words,
the problem results in solving the system

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

1 x3 x23 . . . xn−1
3

...
...

...
. . .

...
1 xn x2n . . . xn−1

n

 ·

a0
a1
a2
...

an−1

 =


y0
y1
y2
...

yn−1

, (3.1)
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where the variables ai are the coefficients of P (x) =

n−1∑
i=0

aix
i.

Then the interpolation polynomial problem results in determining the inverse Vandermonde matrix. This
problem has only one solution. An important case in problems of polynomial interpolation is when the first n
positive integers are known. In this case, the matrix associated with the problem has the following form,

V t =


1 1 ... 1
1 2 ... 2n−1

...
...

...
1 n ... nn−1

 .

Notice the transpose of V t is a Vandermone matrix, so it is possible to determine the solution of this interpolation
problem by studying the inverse of matrix V . The polynomial associated with V is

p(λ) = (λ− 1) · ... · (λ− n) = λn −
n−1∑
k=0

akλ
n−k−1,

obtaining coefficients ak = (−1)k · s(n+ 1, r − k), where s(n, k) is the Stirling number of first kind.

In this situation, equation (2.10) can be rewritten as presented in the sequence,

β
(n−1)
k,0 =

(−1)n−k

(k − 1)! · (n− k)!
.

Then, for an interpolation problem where the first n positive integers terms of the sequence are known, equation
(2.10) is simplified as shown in follows equation,

β
(n−1)
i,0 =

(−1)n−i

(i− 1)! · (n− i)! . (3.2)

As a general case of order 3 , consider the interpolation problem where p(1) = a21 = α1, p(2) = a21 + a22 =
α2, p(3) = a21 + a22 + a23 = α3, and p(4) = a21 + a22 + a23 + a24 = α4, it results in the following linear system,


1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64


︸ ︷︷ ︸

A

·


a
b
c
d


︸︷︷︸

x

=


α1

α2

α3

α4


︸ ︷︷ ︸

b

.

Notice that the matrix A is the transpose matrix of a Vandermonde matrix V , which means this problem
can be solved by determining V −1 and evaluating x = (V −1)t · b. By definition of a Vandermonde matrix
is obtained λ1 = 1, λ2 = 2, λ3 = 3, and λ4 = 4. Then the polynomial p related to matrix V is such
that p(λ) = (λ − λ1)(λ − λ2)(λ − λ3)(λ − λ4) , which gives the coefficients a0 = λ1 + λ2 + λ3 + λ4, a1 =
−(λ1λ2 +λ1λ3 +λ1λ4 +λ2λ3 +λ2λ4 +λ3λ4), a2 = λ1λ2λ3 +λ1λ2λ4 +λ1λ3λ4 +λ2λ3λ4, and a3 = −(λ1λ2λ3λ4),
which comes from Girard’s relation.

Now, through Equation (3.2),

β
(3)
1,0 =

(−1)3

(−1)0 · 0! · 3!
⇒ β

(3)
1,0 = −1

6
,
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β
(3)
2,0 =

(−1)3

(−1)1 · 1! · 2!
⇒ β

(3)
1,0 =

1

2
,

β
(3)
3,0 =

(−1)3

(−1)2 · 2! · 1!
⇒ β

(3)
1,0 = −1

2
,

β
(3)
4,0 =

(−1)3

(−1)3 · 3! · 0!
⇒ β

(3)
1,0 =

1

6
,

By Equation (2.11), coefficients β(k)
i,0 are obtained, for i = 1,

β
(0)
1,0 = a3 ·

β
(3)
1,0

λ1
1

⇒ β
(0)
1,0 =,

β
(1)
1,0 = a2 ·

β
(3)
1,0

λ1
1

+ a3 ·
β
(3)
1,0

λ2
1

⇒ β
(1)
1,0 = −13

3
,

β
(2)
1,0 = a1 ·

β
(3)
1,0

λ1
1

+ a2 ·
β
(3)
1,0

λ2
1

+ a3 ·
β
(3)
1,0

λ3
1

⇒ β
(2)
1,0 =

3

2
,

for i = 2,

β
(0)
2,0 = a3 ·

β
(3)
2,0

λ1
2

⇒ β
(0)
2,0 = −6,

β
(1)
2,0 = a2 ·

β
(3)
2,0

λ1
2

+ a3 ·
β
(3)
2,0

λ2
2

⇒ β
(1)
2,0 =

19

2
,

β
(2)
2,0 = a1 ·

β
(3)
2,0

λ1
2

+ a2 ·
β
(3)
2,0

λ2
2

+ a3 ·
β
(3)
2,0

λ3
2

⇒ β
(2)
2,0 = −4,

for i = 3,

β
(0)
3,0 = a3 ·

β
(3)
3,0

λ1
3

⇒ β
(0)
3,0 = 4,

β
(1)
3,0 = a2 ·

β
(3)
3,0

λ1
3

+ a3 ·
β
(3)
3,0

λ2
3

⇒ β
(1)
3,0 = −7,

β
(2)
3,0 = a1 ·

β
(3)
3,0

λ1
3

+ a2 ·
β
(3)
3,0

λ2
3

+ a3 ·
β
(3)
3,0

λ3
3

⇒ β
(2)
3,0 =

7

2
,

for i = 4,

β
(0)
4,0 = a3 ·

β
(3)
4,0

λ1
4

⇒ β
(0)
4,0 = −1,

β
(1)
4,0 = a2 ·

β
(3)
4,0

λ1
4

+ a3 ·
β
(3)
4,0

λ2
4

⇒ β
(1)
4,0 =

11

6
,

β
(2)
4,0 = a1 ·

β
(3)
4,0

λ1
4

+ a2 ·
β
(3)
4,0

λ2
4

+ a3 ·
β
(3)
4,0

λ3
4

⇒ β
(2)
4,0 = −1.

Since the coefficients of V −1 were determined, the interpolation polynomial is determined as presented by,
a
b
c
d

 =


1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64


−1

·


α1

α2

α3

α4

⇒

a
b
c
d

 =


4 − 13

3
3
2
− 1

6

−6 19
2

−4 1
2

4 −7 7
2
− 1

2

−1 11
6

−1 1
6


t

·


α1

α2

α3

α4
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⇒


a
b
c
d

 =


4 α1 − 6 α2 + 4 α3 − α4

1
6
(−26 α1 + 57 α2 − 42 α3 + 11 α4)

1
2
(3 α1 − 8 α2 + 7 α3 − 2 α4)
1
6
(−α1 + 3 α2 − 3 α3 + α4)

 .
Returning to the original variables, the coefficients are a = a21 − 3 a22 + 3 a23 − a24, b = 13

3
a22 − 31

6
a23 + 11

6
a24,

c = − 3
2
a22 + 5

2
a23 − a24, and d = 1

6
a22 − 1

3
a23 + 1

6
a24.

Therefore, the desired polynomial p is given by

p(x) = a21 − 3a22 + 3a23 − a24 +
(26a22 − 31a23 + 11a24)

6
x+

(−3a22 + 5a23 − 2a24)

2
x2 +

(a22 − 2a23 + a24)

6
x3.

The following example consists of a particular case of obtaining an explicit formula for the sum of an arithmetic
sequence of a high order, which can be seen as a case of an interpolation problem.

Example 3.1. Consider the problem where is desired to obtain an explicit formula for the sum of the first
n squared terms of an arithmetic sequence (an)n∈N . Since (an)n∈N is an arithmetic sequence, follows that
an = a1 + (n − 1)r, where a1 is the first term of this sequence and r is the common difference of successive
members.

Then the problem consists in obtaining an explicit formula for Sn, given by,

Sn =

n∑
k=1

a2k =

n∑
k=1

(a21 + 2 · a1(k − 1)r + (k − 1)2 · r2). (3.3)

Observe that Sn is an arithmetic sequence of the third order, which means it can be described as a third-degree
polynomial p(x) = a+ bx+ cx2 + dx3, since

∆Sk = Sk − Sk−1 ⇒ ∆Sk = a2k

∆2Sk = a2k − a2k−1 ⇒ ∆2Sk = (4r2 − 2a1r)k − r2

∆3Sk = 2a1r − 4r2,

which r is constant.

Notice the problem of the sum of squares of the first n positive integers, is a particular problem of this case,
where a1 = 1, a2 = 2, a3 = 3, and a4 = 4. In this particular situation is obtained a = 0, b = 1

6
, c = 1

2
, and

d = 1
3
. Then, the polynomial to describe the summation is given by,

p(n) = 0 +
1

6
x+

1

2
x2 +

1

3
x3 ⇒ p(n) =

n(n+ 1)(2n+ 1)

6
,

as it is mostly known.

It seems to us that this approach to solve interpolation problems and its application to solve recurrence problems
are new.

4 Solving Linear Recurrence Relations
This section is devoted to solving a linear recurrence relation using the method of obtaining the explicit formulas
for the entries of the inverse Vandermonde matrix described in Section 2. Consider a linear recurrence relation
of order r

Vn = a0Vn−1 + an−2Vn− + · · ·+ ar−1Vn−r+1, (4.1)
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for n ≥ r, where the coefficients ai, i = 0, 1, · · ·n − 1 are real or complex numbers, ar−1 6= 0, and
V0, V1, V2, · · · , Vr−1 are the initial conditions.

The characteristic polynomial associated with (4.1) is given by

zn − a0zn−1 − an−2zn− + · · · − ar−1zn−r+1 = 0. (4.2)

It is well-known that the explicit analytic formula for Vn can be derived by a linear combination of the n− th
power roots of the characteristic polynomial associated (Binet formula) with the constants of the combination
given as a solution of a Vandermonde system. In the sequel, each possible case of the roots of characteristic
polynomial, simple, and roots with multiplicity, are discussed and the explicit analytic formulas are provided.

4.1 Simple roots
Recall the linear recurrence relation of order r given by the Equation (4.1) and initial conditions V0, V1, V2, · · · , Vr−1.
Suppose that the characteristic polynomial (4.2) associated have simple roots λ1, λ2, · · ·λr . Then, this implies
the solution given by

Vn = C1 · λn
1 + C2 · λn

2 + · · ·Cr · λn
r .

where the constants Ci are derived as the solution of the system


1 λ1 λ2

1 . . . λn−1
1

1 x2 λ2
2 . . . λn−1

2

1 λ3 λ2
3 . . . λn−1

3

...
...

...
. . .

...
1 λn λ2

n . . . λn−1
n

 ·

C1

C2

C3

...
Cr

 =


V0

V1

V2

...
Vn−1

.

By direct application of Proposition 2.2 we obtain,


C1

C2

C3

...
Cr

 =



β
(0)
1,0 β

(1)
1,0 ... β

(r−1)
1,0

...
...

...
β
(0)
1,m1−1 β

(1)
1,m1−1 ... β

(r−1)
1,m1−1

...
...

...
β
(0)
s,0 β

(1)
s,0 ... β

(r−1)
s,0

...
...

...
β
(0)
s,ms−1 β

(1)
s,ms−1 ... β

(r−1)
s,ms−1




V0

V1

V2

...
Vn−1

 (4.3)

with each enter of the matrix defined by Equations (2.10) and (2.11).

The linear recurrence relation of the Fibonacci numbers is considered a special application.

Example 4.1. Consider the following recursive problem known as the Fibonacci sequence, where its terms are
generated by adding the two immediately previous terms, resulting in the recursive equation Fn = Fn−1 + Fn−2,
and F0 = F1 = 1.

The characteristic polynomial of the given recursive problem is given by p(z) = z2−z−1 , in which the coefficients
are a0 = 1, a1 = 1, and its roots λ1 = 1+

√
5

2
and λ2 = 1−

√
5

2
. This implies the solution of this recursive sequence

is Fn = C1 · λn
1 + C2 · λn

2 , where C1 and C2 are constants to be determined.
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Since the roots of the characteristic polynomial are all simple, it is possible to use Equation (2.10) to solve this
problem,

β
(1)
1,0 =

(−1)2−1

−
√

5
⇒ β

(1)
1,0 =

1√
5
,

β
(1)
2,0 =

(−1)2−1

√
5

⇒ β
(1)
2,0 = − 1√

5
.

Obtained the coefficients β(1)
i,0 , the missing coefficients are determined by Equation (2.11),

β
(0)
1,0 = a1 ·

β
(1)
1,0

λ1
⇒ β

(0)
1,0 = 1 ·

(
1√
5

)
(

1+
√
5

2

) ⇒ β
(0)
1,0 =

2√
5 + 5

β
(0)
2,0 = a1 ·

β
(1)
2,0

λ2
⇒ β

(0)
2,0 = 1 ·

(
−1√
5

)
(

1−
√
5

2

) ⇒ β
(0)
2,0 =

−2√
5− 5

.

The constants C1 and C2 of this problem are given by the product between the inverse of the associated
Vandermonde matrix and the initial condition of the sequence as follows,[

β
(0)
1,0 β

(1)
1,0

β
(0)
2,0 β

(1)
2,0

]
·
[
F0

F1

]
=

[
2√
5+5

1√
5

−2√
5−5

− 1√
5

]
·
[
1
1

]
=

 1√
5
·
(

1+
√
5

2

)
− 1√

5
·
(

1−
√
5

2

) .
Thus,

Fn =
1√
5
·

((
1 +
√

5

2

)n+1

−
(

1−
√

5

2

)n+1
)
.

4.2 Roots with multiplicity greater than one: two or more different roots
Given the linear recurrence relation of order r given by the Equation (4.1) and initial conditions V0, V1, V2, · · · , Vr−1,
Suppose that the characteristic polynomial (4.2) associated have roots λ1, λ2, · · ·λs with multiplicities m1,m2, · · · ,ms,
respectivally, where m1 +m2 + · · ·+ms = n. Then, this implies the solution is given under the form,

Vn = (C1,1 + C1,2n+ · · ·+ C1,m1n
m1−1)λn

1 + · · ·+ (Cs,1 + Cs,2n+ · · ·+ Cs,msn
ms−1)λn

s

where the constants Ci,j is derived as solution of the system


1 0 ... 0 ... 1 ... 0
λ1 λ1 ... λ1 ... λs ... λs

λ2
1 2λ2

1 ... 2m1−1λ2
1 ... λ2

s ... 2ms−1λ2
s

...
...

...
...

...
λr−1
1 (r − 1)λr−1

1 ... (r − 1)m1−1λr−1
1 ... λr−1

s ... (r − 1)ms−1λr−1
s

 ·

C1

C2

C3

...
Cr

 =


V0

V1

V2

...
Vn−1

.

By direct application of Proposition 2.2 to solve (4.2), we derive the explicity formula for Vn.

Let the following illustrative example clarify the approach.
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Example 4.2. Consider the problem of determining the solution of a recursive sequence described as vn =
4vn−1 + 3vn−2 − 18vn−3, with v0 = 0 and v1 = v2 = 1.

The characteristic polynomial associated with this recursive sequence is p(λ) = λ3 − 4λ2 − 3λ + 18, obtaining
a0 = 4, a1 = 3, a2 = −18, λ1 = −2, λ2 = 3, m1 = 1,m2 = 2, and the solution of the problem vn =
C1 · (−2)n + C2 · 3n + C3 · n3n, where C1, C2, C3 are the constants to be determined by the presented general
method.

By Equation (2.3), the coefficients β(2)
i,j are obtained as follows, for i = 1,

β
(2)
1,0 = s(0, 0) · γ

[1]
0 (λ1, λ2)

0! · λ0
1

⇒ β
(2)
1,0 = γ

[1]
0 (λ1, λ2),

for i = 2 and j = 0,

β
(2)
2,0 = s(0, 0) · γ

[2]
0 (λ1, λ2)

0! · λ0
2

+ s(1, 0) · γ
[2]
1 (λ1, λ2)

1! · λ1
2

⇒ β
(2)
2,0 = γ

[2]
0 (λ1, λ2),

for i = 2 and j = 1,

β
(2)
2,1 = s(1, 1) · γ

[2]
1 (λ1, λ2)

1! · λ1
2

⇒ β
(2)
2,0 =

γ
[2]
1 (λ1, λ2)

λ2
.

The set ε[1]0 , ε
[2]
0 , and ε

[2]
1 used in Equation (2.5) are defined as {n2 = 0}, {n1 = 1}, and {n1 = 0}, respectively.

Now, by Equation (2.5), the coefficients previously obtained are rewritten as follows,

β
(2)
1,0 = (−1)3−1 ·

(
n2+m2−1

n2

)
(λ2 − λ1)n2+m2

⇒ β
(2)
1,0 =

1

(λ2 − λ1)2
⇒ β

(2)
1,0 =

1

25
,

β
(2)
2,0 = (−1)3−2 ·

(
n1+m1−1

n1

)
(λ1 − λ2)n1+m1

⇒ β
(2)
2,0 = − 1

(λ1 − λ2)2
⇒ β

(2)
2,0 = − 1

25
,

β
(2)
2,1 = (−1)3−2 ·

(
n1+m1−1

n1

)
(λ1 − λ2)n1+m1

· 1

λ2
⇒ β

(2)
2,1 = − 1

(λ1 − λ2) · λ2
⇒ β

(2)
1,0 =

1

15
.

Obtained the coefficients β(2)
i,j , by Formula (2.6), the other coefficients are given by β

(0)
i,j = a2 ·C(1)

i,j and β
(1)
i,j =

a1 ·C(1)
i,j + a2 ·C(2)

i,j . Then, by applying Equation (2.7), the coefficientes C(d)
i,j are determined and, consequently,

so does βk
i,j .

For i = 1, we have,

C
(1)
1,0 = λ−1

1 · (−1)0−0β
(2)
1,0

(
0

0

)
· 10−0 ⇒ C

(1)
1,0 = − 1

50
,

C
(2)
1,0 = λ−2

1 · (−1)0−0β
(2)
1,0

(
0

0

)
· 20−0 ⇒ C

(2)
1,0 =

1

100
,

β
(0)
1,0 = a2 · C(1)

1,0 ⇒ β
(0)
1,0 = −18 ·

(
− 1

50

)
⇒ β

(0)
1,0 =

9

25
,

β
(1)
1,0 = a1 · C(1)

1,0 + a2 · C(2)
1,0 ⇒ β

(1)
1,0 = 3 ·

(
− 1

50

)
− 18 ·

(
1

100

)
⇒ β

(1)
1,0 = − 6

25
.

For i = 2 and j = 0,

C
(1)
2,0 = λ−1

2 ·

(
(−1)0−0β

(2)
2,0

(
0

0

)
· 10−0 + (−1)1−0β

(2)
2,1

(
1

0

)
· 11−0

)
⇒ C

(1)
2,0 = − 8

225
,
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C
(2)
2,0 = λ−2

2 ·

(
(−1)0−0β

(2)
2,0

(
0

0

)
· 20−0 + (−1)1−0β

(2)
2,1

(
1

0

)
· 21−0

)
⇒ C

(2)
2,0 = − 13

675
,

β
(0)
2,0 = a2 · C(1)

2,0 ⇒ β
(0)
2,0 = −18 ·

(
− 8

225

)
⇒ β

(0)
2,0 =

16

25

β
(1)
2,0 = a1 · C(1)

2,0 + a2 · C(2)
2,0 ⇒ β

(1)
2,0 = 3 ·

(
− 8

225

)
− 18 ·

(
−−13

675

)
⇒ β

(1)
2,0 =

6

25
,

and for i = 2 and j = 1, we obtain

C
(1)
2,1 = λ−1

2 · (−1)1−1β
(2)
2,1

(
1

1

)
· 11−1 ⇒ C

(1)
2,1 =

1

45
,

C
(2)
2,1 = λ−2

2 · (−1)1−1β
(2)
2,1

(
1

1

)
· 21−1 ⇒ C

(2)
2,1 =

1

135
,

β
(0)
2,1 = a2 · C(1)

2,1 ⇒ β
(0)
2,1 = −18 ·

(
1

45

)
⇒ β

(0)
2,1 = −2

5
,

β
(1)
2,1 = a1 · C(1)

2,1 + a2 · C(2)
2,1 ⇒ β

(1)
2,1 = 3 · 1

45
− 18 · 1

135
⇒ β

(1)
2,1 = − 1

15
.

Then, the desired coefficients are obtained by the product between the inverse matrix with coefficients V −1 =
(β

(k)
i,j ) and the initial conditions,

C1

C2
C3

 =

 9
25

− 6
25

1
25

16
25

6
25

− 1
25

− 2
5
− 1

15
1
15

 ·
0

1
1

⇒
C1

C2
C3

 =

− 1
5

1
5

0

 .
Therefore, the recursive sequence is described as vn = − 1

5
· (−2)n + 1

5
· (3)n.

4.3 Roots with multiplicity greater than one: single root
A special case to take into consideration when working with this new method is shown in the sequence. Let the
recursive sequence given by the Equation (4.1) with the characteristic polynomial associated given by p(z) =
(z−λ)r and initial conditions V0, V1, · · ·Vr−1. Observe that the root of p(z) is λ with multiplicity r. Therefore,
the solution to this problem is associated with the following Vandermonde matrix,

1 0 ... 0
λ λ ... λ
λ2 2λ2 ... 2r−1λ2

...
...

...
λr−1 (r − 1)λr−1 ... (r − 1)r−1−1λr−1

. (4.4)

Observe that the determinant of matrix (4.4) is given by sf(r − 1)λr(r−1)/2 6= 0 where sf(n) = 1!2!3! · · ·n! is
a superfactorial of n.

The matrix expressed under the form (4.4) is of type of generalized Vandermonde matrix (2.1), nevertheless, the
given formula presented in (2.5) cannot be used in this situation to obtain its inverse since it does not include
a case where there is a single solution to the characteristic equation associated with the recursive sequence.
It is also possible to verify that using the value one, since it is the identity number of multiplication, in the
denominator does not generate the correct answer to the problem.
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In this situation, it would be necessary to use one of the classical methods to solve. In this situation, the
constants that determine the solution of the recursive problem can be obtained by solving the following linear
system.

Example 4.3. To clarify, consider the following example. Let the recursive sequence with the characteristic
polynomial given by p(λ) = (λ− 2)4 and initial conditions v3 = v2 = v1 = v0 = 1.

The zeros of polynomial p are given by λ = 2 and its multiplicity m = 4, therefore, the solution to this problem
is associated with the following matrix,

1 0 0 0
2 2 2 2
22 2 · 22 22 · 22 23 · 22

23 3 · 23 32 · 23 33 · 23

 =


1 0 0 0
2 2 2 2
4 8 16 32
8 24 72 216




1 0 0 0
2 2 2 2
4 8 16 32
8 24 72 216

 ·

C1

C2

C3

C4

 =


1
1
1
1

 .
By the Gauss elimination method,

1 0 0 0
2 2 2 2
4 8 16 32
8 24 72 216

∣∣∣∣∣∣∣∣
1
1
1
1

⇒


1 0 0 0
0 2 2 2
0 8 16 32
0 24 72 216

∣∣∣∣∣∣∣∣
1
−1
−3
−7

⇒


1 0 0 0
0 2 2 2
0 0 8 24
0 0 48 192

∣∣∣∣∣∣∣∣
1
−1
1
5

⇒


1 0 0 0
0 2 2 2
0 0 8 24
0 0 0 48

∣∣∣∣∣∣∣∣
1
−1
1
−1

⇒

C1

C2

C3

C4

 =


1
− 2

3
3
16

− 1
48


Concluding, the problem is described by the following function,

vn =

(
1− 2n

3
+

3n2

16
− n3

48

)
· 2n.

This example presents a possibility to extend the study done by the main article discussed here in order to
include this special case in its formulation.

5 Conclusions
In this study, we presented a new perspective on the solution of problems involving the inverse of Vandermonde
matrices. We discussed the explicit formulas for entries of inverted generalized Vandermonde matrix presented
in [10] and provided, as applications, a new approach for solving a linear recurrence relation and interpolation
problems, which depends on the process of inverting Vandermonde matrices. We described the interpolation
problem and established, with a special case, the solution. An example in the mathematical context was
exhibited. The cases of each kind of root multiplicity of characteristic polynomial associated with the recurrence
relation were discussed and a new approach was established.

It seems to us that this new approach is not currently in the literature, and the results and examples established
here can be used as an alternative method to solve the problems that depend on the inverse Vandermonde
matrix.
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The discussion of if this method has computational advantages over others in the literature is an open problem.
It seems to us that the complexity time of the methods presented in [8] and [10] is the same and the LU method
is best for problems with the order of the matrix associated is large. In addition, to extend the study done by
the main article discussed here in order to include the case of the characteristic polynomial that has a single
root with multiplicity greater than one.
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