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Abstract

In this study, a new three parameter extension of the Chen distribution was proposed and called the
New Extended Chen distribution. Some statistical properties of the proposed distribution are presented.
The proposed distribution exhibits varied complex and hazard shapes. Parameters of the distribution are
estimated using the maximum likelihood estimation method and a simulation study is conducted to evaluate
the performance of the estimators. The New Extended Chen distribution is applied to two real data set and
compared to other modifications of the Chen distribution to emphasise the applicability of the the distribution.
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1 Introduction

In the field of univariate statistical analysis, the modelling of monotonic hazard rates may be done using
Weibull, gamma, lognormal, exponential, and other underlying distributions which are examples of conventional
distributions. However, the limitations in some of these distributions makes it challenging in modelling data
set that exhibits flexible characteristics such as bathtub and upside down bathtub features for their hazard
functions. Majority of these traditional models mentioned only show hazard rates that are monotonically
increasing, constant and decreasing. In most data sets generated from the field of finance, climatology, geology,
hydrology, ecology, health sciences, reliability, life testing and risk analysis, the most important and realistic
shape is the bathtub-shaped, increasing and decreasing. Although, there exist many statistical distributions
with some level of flexibility, the continues production of data sets from various fields do not fit to some of these
developed distributions.

The methods of generating new distributions, has been an area of interest to researchers. There are several
methods used to generate distributions notable amongst them is the method of using an underlining family or
generator. Some important families include odd exponentiated half-logistic-G [1], Topp Leone odd Lindley-G
[2], Marshall–Olkin alpha power-G [3], transmuted transmuted-G [4], Weibull Marshall–Olkin [5], Extended odd
Fréchet-G [6], rT-X Family [7] and [8] families. Recently, [9] established a new approach of introducing an
additional shape parameter to modify the flexibility of existing distributions, New Extended Family NE-F with
CDF defined by

G(x; θ, a) = F (x; a)eθ̄F (x;a) (1.1)

and PDF,

g(x; θ, ξ) = f(x; ξ)eθ̄
¯F (x;ξ) [1− θ̄F (x; ξ)

]
(1.2)

where x ∈ R
Chen [10] a novel two-parameter distribution with an increasing failure rate function or bathtub. The advantage
of this distribution can be associated with the exact confidence intervals and joint confidence region for the
parameter [11]. In order to increase the flexibility and increase the number of alternative hazard shapes for the
distribution, the family of distribution proposed by [12] was applied by [13] to propose the exponentiated Chen
distribution. The Kumaraswamy Chen distribution was obtained [13] to increase the flexibility of the Chen by
applying the Kumaraswamy family. Subsequently The Marshall-Olkin technique was applied by [11] in order to
develop the Marshall-Olkin Chen distribution. The Chen-geometric and Marshall-Olkin Chen distributions can
be viewed as similar distributions with the same parameters. Subsequently, Another compounding distribution
was proposed by [14], who studied the Chen-logarithmic distribution and also extended the parameter space of
the logarithmic distribution. In recent times many versions of the Chen distribution has been proposed and can
be found in [15], [16], [17] and [18].

The purpose of this study is to developed a new flexible extension of the Chen distribution in light of the
aforementioned limitations.[10] using the New Extended family (NE-F) introduced by [9]. The advantage of
using the Extended Family is from the fact that the NE-F introduces an additional shape parameter θ to the
existing two parameter Chen distribution which increases the flexibility by increasing its skewness. The study
of the proposed distribution is motivated by the following:

• To develop a distribution which exhibits unimodal, and varying skewness and kurtosis.

• To develope a new extension of the Chen distribution that can be used as a better substitute for other
other extensions of the Chen distribution in modelling lifetime data sets.

The remainder of the paper is organized as follows. In Section 2, the model formulation of the new lifetime
distribution is discussed together followed by the study of its properties, including the shapes of the probability
density function (PDF) and hazard function (HF). Section 3 presents the graphical shapes of the PDF and
hazard function of the New Extended Chen distribution. Section 4 presents some statistical properties of the
New Extended Chen. The maximum likelihood methods are presented in Section 5. In Sections 6, we obtain the
best method of estimating the parameters of the New Extended Chen distribution by obtaining the maximum
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likelihood estimates through a simulation study. The New Extended Chen distribution is applied to two data
sets in Section 7 and the results are compared with different known modified Chen distributions. Finally some
conclusions draw from the study are presented in section 8.

2 Model Formulation

Let X be a random variable following a Chen distribution [10] with CDF and PDF given by

f(x) = 1− ed(1−e
xb

) x ≥ 0 (2.1)

and probability density function given as,

f(x) = bdxb−1ed(1−e
xb

)xb . (2.2)

where b > 0 is the shape parameter and d is the scale parameter. The CDF of the NEC distribution is defined
by substituting the CDF of the Chen distribution in Equation 2.1 into the NE-F CDF in Equation 1.1. Then,
the New Extended Chen Distribution (NEC) distribution with parameters b > 0, d > 0 and θ > 0 is given by

F (x; b, d, θ) = 1− exp

[
d
(

1− ex
b
)

+ θ̄

(
1− e

d

(
1−ex

b
))]

, x ≥ 0, (2.3)

where b > 0, θ > 0 are the shape parameters and d > 0 is the scale parameter. The PDF of the NEC distribution
is subsequently derived by differentiating the CDF which is given by;

f(x) = bdxb−1 exp

[
xbe

d

(
1−ex

b
)

+ θ̄

(
1−

(
1− e

d

(
1−ex

b
)))][

1− θ̄

(
1− e

(
d

(
1−ex

b
)))]

(2.4)

with survival and hazard functions derived as shown in Equations (7) and (8) respectively

S(x) = exp

[
d
(

1− ex
b
)

+ θ̄

(
1− e

d

(
1−ex

b
))]

(2.5)

h(x) =

bdxb−1 exp

[
xbe

d

(
1−ex

b
)

+ θ̄

(
1−

(
1− e

d

(
1−ex

b
)))][

1− θ̄

(
1− e

(
d

(
1−ex

b
)))]

exp

[
d
(
1− exb

)
+ θ̄

(
1− ed

(
1−exb

))] . (2.6)

3 Shapes of the PDF and Hazard Function

The PDF and hazard plots of the NEC distribution are displayed for some parameter values in Fig. 1(a) and
1(b) respectively. The theoretical analysis of Fig. 1 displays various shapes of the NEC distribution. In Fig.
1(a) the various parameter values that were generally used for the density plots are unimodal. It can be also
be observed that the density plots exhibits both right and left skewed shapes. In addition, for some parameter
values, the density exhibits a reverse J (exponential decreasing) and increasing shapes. Afterwards, the hazard
plots in Fig. 1(b) exhibits both right and left skewed shapes. Also the hazard plots exhibits upside down bathtub
shape.

Lemma 3.1. The PDF of the NEC distribution can be expressed in a series representation using the generalised
PDF series expansion of the NE-F family introduced in [9]. Thus ,

f(x) =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnpx
b(p+1)−1e−px

b

, (3.1)
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Fig. 1. PDF plots of the NEC distribution

where x > 0, d > 0, b > 0 and θ > 0 and

ω =

(
j

k

)(
k

m

)(
n

p

)
θ̄(−1)k+m+q+n(k + 1)(n+ 1)pd(n+1)(m+ 1)nb

j!n!p!

The proof of Lemma 2.1 is straightforward using series expansions techniques and, therefore, are omitted. The
New Extended family PDF introduced by [9] can be expressed as

g(x; θ, ξ) =

∞∑
i,j=0

θ̄(−1)k(k + 1)

j!

(
j

k

)
f(x; ξ)(F (x; ξ)k). (3.2)

Substituting the Equations ... and ..... into Equation 3.2,

f(x) =

∞∑
i,j=0

θ̄(−1)k(k + 1)

j!

(
j

k

)
bdxb−1ed(1−e

xb
)xb
{

1− ed(1−e
xb

)

}k
, (3.3)

Considering the expansion,

ex =

∞∑
m=0

xm

m!
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Fig. 2. Hazard plots of the NEC distribution

then,

ed(1−e
xb

)xb =

∞∑
m=0

dm(1− ex
b

)mxbm

m!
(3.4)

Consider the power series,

(1− z)t =

∞∑
i=0

(−1)t
(
t

i

)
zt

where |z| < 1, then the equation

(1− ex
b

)m =

m∑
p=0

(−1)m
(
m

p

)
emx

b

. (3.5)

Considering

{
1− ed(1−e

xb
)

}k
, we apply the power series equation, thus

{
1− ed(1−e

xb
)

}k
=

k∑
q=o

(−1)q
(
q

k

)
ekd(1−e

xb
) (3.6)
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further,

ekd(1−e
xb

) =

∞∑
n=0

kndn

n!
(1− ex

b

)n (3.7)

then,

(1− ex
b

)n =

n∑
h=0

(−1)n
(
n

h

)
enx

b

. (3.8)

Inserting Equations 3.4,3.5, 3.6, 3.7 and 3.8 into Equation 3.3,

f(x) =

∞∑
i,j,m=0

m∑
p=0

k∑
q=0

θ̄(−1)k+m+q+n(k + 1)d(m+n+1)b

j!m!n!

(
n

h

)(
q

k

)(
m

p

)
xbm+b−1e(m+n)xb

The proof is complete.

4 Statistical Properties

In this section, some statistical properties of the NEC distribution are presented to authenticate the uniqueness
of the proposed distribution.

4.1 Quantile, median and quartiles

Suppose X has the NEC distribution, then the Quantile function is given by

Q(u) =
Log[(1 + d− θ − Log[1− u] +W [−e(−1+θ)(−1 + θ)(−1 + u)])

d

1/b

(4.1)

where u ∈ (0, 1) and W [·] is the Lambert W function. The first quartile, the median, and the upper quartile
can be obtained by using the quantile function by setting p = 0.25, 0.5, 0.75. In addition, the quantile function
can be applied to generate random data using the quantile of the NEC distribution.

4.2 Moments

The moments of a random variable, if they exist, are important tools for deriving statistical measures such
as standard deviation and variance of data sets, and they aid in identifying the varied pictorial shapes of the
population.
Let X follow the NEC distribution, then the rth moment can be derived as

µ
′
r =

∫ ∞
0

xrf(x)dx. (4.2)

Substituting Equation (3.1) into Equation (4.2), we obtain

µ
′
r =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp

∫ ∞
0

xr+b(p+1)−1e−px
b

dx. (4.3)

Let u = pxb, as x → 0, u → 0 and as x → ∞, u → ∞, which implies x = (u
p

)1/b and dx = du
pbxb−1 . By

substituting x and dx we obtain,

µ
′
r =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp

∫ ∞
0

u
bp+r+1

b
+1−1e−u

p
bp+b+r+1

b b
du.
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Using the identity

Γ(α) =

∫ ∞
0

yα−1e−ydy,

we obtain the rth moment of the NEC distribution as

µ
′
r =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+r+1

b
+ 1)

p
bp+b+r+1

b b
. (4.4)

The first four moments of the random variable X are given by;

E[X] =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+2

b
+ 1)

p
bp+b+2

b b

E[X2] =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+3

b
+ 1)

p
bp+b+3

b b

E[X3] =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+4

b
+ 1)

p
bp+b+4

b b

and

E[X4] =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+5

b
+ 1)

p
bp+5

b b
.

4.3 Incomplete moment

The incomplete moment is used to complete certain measures such as Lorenz curve, Gini, and pietra measures
of inequality across two populations. In this study we obtain the incomplete moment of the NEC using the
relation

mr(y) = E(Xr|X ≤ y) =

∫ y

0

xrf(x)dx. (4.5)

Substituting Equation 3.1 into Equation 4.5 we obtain

mr(y) =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp

∫ y

0

xr+b(p+1)−1e−px
b

. (4.6)

We again let u = pxb, as x → 0, u → 0 and as x → y, u → pyb which implies x = (u
p

)1/b and dx = du
pbxb−1 . By

substituting x and dx we obtain

mr(y) =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp

∫ ∞
pyb

u
bp+r+1

b
+1−1e−u

p
bp+b+r+1

b
+1b

du.

Using the identity

Γ(α, x) =

∫ ∞
x

tα−1e−tdt.

The incomplete moment of the NEC distribution can be defined as

mr(y) =
∞∑

i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+r+1

b
, pyb)

p
bp+b+r+1

b b
.
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4.4 Moment generating function

The moment generating function (MGF) if it exist is a special functions used to compute the moments. Given
a random variable X having the NEC distribution is given by The MGF of Y is defined as,

MY (t) = E(etX) =

∫ ∞
−∞

etxf(x)dx.

Using the results obtained in Equation (13) the MGF of the NEC distribution reduces to

MX(t) =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

i∑
j=0

ωjkmnp
trΓ( bp+r+1

b
+ 1)

r!p
bp+b+r+1

b b
.

4.5 Beforroni and lorenz curve

Measures of income disparity using Lorenz and Bonferroni curves are broadly relevant and applicable to different
fields as reliability, demography, medicine, and insurance. In section, We derive the Lorenz and Bonferroni curves
for the NEC distribution in this section. The Lorenz curve for a random variable having the NEC distribution
is derived from the definition of the Lorenz curve given by,

LG(x) =
1

µ

∫ y

0

xf(x)dx

the Lorenz curve is simply the product of the first incomplete moment and the reciprocal of the mean of the
random variable. Hence, the Lorenz curve of the NEC distribution is given by,

LNEC(x) =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+2

b
+ 1)

µp
bp+b+2

b b
(4.7)

The Befforoni curve on the other hand is defined as,

B(G)(x) =
LG(x)

F (x)
. (4.8)

From Equation (17) and (18) the Befforoni curve of the NEC distribution is given by,

BG(x) =

∞∑
i,j=0

k∑
m=0

∞∑
n=0

n∑
p=0

ωjkmnp
Γ( bp+2

b
)

F (x)µp
bp+b+2

b b
.

5 Maximum Likelihood Estimation Method

In this section, we employ the maximum likelihood estimation (MLE) method to obtain the estimators of the
parameters b, d and θ of the NEC distribution. The method of maximum likelihood estimation (MLE) is
one of the most used estimation technique used for parameter estimation due to its desirable characteristics.
Let x1, . . . xn be a random sample of size n from Equation (6), then the log-likelihood function of the NEC
distribution is given by;

lnL (x; b, d, θ) =n ln b+ n ln d+ (b− 1) ln

n∑
i=1

xi +

n∑
i=1

xbi +

n∑
i=1

ed(e
xb
i−1) − (1− θ)

n∑
i=1

(1− ed(1−e
xb
i
)) + (1− θ)

n∑
i=1

ln(1− e(d(1−ex
b
i )))

(5.1)
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For uniformity, the first partial derivatives of Equation 5.1 are denoted by Lb, Ld and Lθ, By setting Lb = 0,
Lθ = 0 and Ld = 0, we obtain Equations (20), (21) and (22).

Lb =
n

b
+

n∑
i=1

xbi ln(xi) +

n∑
i=1

ded(−1+ex
b
i )+xbi + ln(xi) +

n∑
i=1

ded(−1+e
x
ib

)+xb
i
(1− θ)xbi ln(xi)

+

n∑
i=1

ded(−1+ex
b
i )+xbi (1− θ)xbi (xi)

1− ed(−1+e
xb
i ))

= 0,

(5.2)

Lθ =

n∑
i=1

1− e(d(−1+ex
b
i ))

+

n∑
i=1

ln(1− e(d(1−ex
b
i ))) = 0, (5.3)

Ld =
n

d
+

n∑
i=1

xbie
d(−1+ex

b
i )(ex

b
i−1) +

n∑
i=1

ed(−1+ex
b
i )e(x

ib
−1)(θ−1) e

d(−1+ex
b
i )+xbi (1− θ)xbixi

1− ed(−1+e
xb
i ))

= 0, (5.4)

The estimators of the NEC distribution can be obtained by solving equation (20), (21) and (22) in relation to
a, θ and d simultaneously using a numerical procedure.

6 Simulation Study

We examine the behavior of the NEC estimators provided in section 4 for the NEC distribution’s parameters.
To verify the validity of these estimators, the average bias (AB) and mean square error (MSE) are computed. In
the study we consider sample sizes n = 5, 100, 250, 300, 350 and 500 were considered. The R software was used
to estimate the proposed models parameters. The experiment is replicated for 10, 000 times to compare the AB
and MSE of th four estimation techniques suggested in section 4. The AB and MSE are computed using,

AB =
1

N

N∑
i=0

(
θ̂i − θ

)
MSE =

1

N

N∑
i=1

(
θ̂i − θ

)2

.

where r = 10, 000 and θ̂i is the estimation parameters of the NEC distribution that is θ = (b, d, θ). The
simulation results for θ = (0.9, 9.8, 5.9), θ = (9.2, 0.5, 3.4) and θ = (9.1, 2.3, 5.6) are presented in Table 1. The
selection of the best estimation method will be made having a minimum estimate of MSEs and decreasing
ABs. The R software is used to derive the simulation results. The results of ABs and MSEs for the MLE are
presented in Tables 1. It is observed that the ABs decreases as the samples sizes increases and also the MSEs
decrease with the increase in the sample size. It is sufficient enough to conclude that the estimators are unbiased
asymptotically. In general, these results suggest that the estimation of parameters was performed consistently.
Table 1 displays the simulation results of the ER-Kum distribution. It is clear that the estimators are consistent
since both the RMSEs and ABs decreases with increasing sample size.

7 Data Analysis

In this section, we offer two examples using actual data sets that demonstrate the versatility of the NEC
distribution. The computations are performed using the R software. The NEC distribution is compared with
the Chen-Logarithmic [14], Exponentiated Chen [19], Modified Extended Chen (MEC) [15], Transmuted Chen
[20] and Marshall-Olkin Chen [11] distribution. The competing distributions were compared using different
goodness of fit criteria and information criteria such as;

i. Kolmogorov-Smirnov (KS) test

KS = { |Gexp(xi)−Gobs(xi)|, |Gexp(xi)−Gobs(xi)|}

where G(x) is the CDF of the random variable X and i = 1, 2, . . . , n.

34



Acquah et al.; Asian J. Prob. Stat., vol. 23, no. 4, pp. 26-42, 2023; Article no.AJPAS.103987

Table 1. Simulation results

b = 0.9, d = 9.8, θ = 5.9 b = 9.2, d = 0.5, θ = 3.4 b = 9.1, d = 2.3, θ = 5.6

Parameter n AB RMSE AB RMSE AB RMSE

a 20 0.0568 0.0120 6.0932 3.4541 0.2614 0.0062
50 0.0411 0.0111 1.0981 1.0009 0.2602 0.0026
100 0.0303 0.0100 0.0019 0.9111 0.2601 0.0017
150 0.0144 0.0050 0.0200 0.1113 0.2597 0.0014
200 0.0065 0.0034 0.0136 0.0123 0.2596 0.0010
250 0.0052 0.0020 0.0100 0.0032 0.2498 0.0008
300 0.0021 0.0014 0.0078 0.0027 0.2390 0.0006
400 0.0015 0.0003 0.0064 0.0008 0.2100 0.0005
500 0.0012 0.0001 0.0011 0.0003 0.2111 0.0002

b 20 -0.9240 1.2309 -8.9120 5.9021 0.0012 1.0981
50 -0.1092 3.9821 -0.9871 1.9081 -0.0007 0.9011
100 0.2309 1.0091 -0.9970 1.4524 -0.0014 0.6202
150 0.1267 0.2309 9.0971 1.2109 -0.0039 0.5400
200 0.4509 0.0091 3.0871 1.1102 -0.0017 0.3206
250 0.3201 0.0083 2.9811 1.0872 0.0014 0.2111
300 0.2134 0.0068 1.0987 0.0271 0.0010 0.1111
400 0.1009 0.0032 0.0389 0.0251 0.0009 0.1190
500 0.0981 0.0004 0.0010 0.0012 0.0001 0.0010

θ 20 -0.9240 1.2309 -8.9120 5.9021 0.0012 1.0981
50 -0.1092 3.9821 -0.9871 1.9081 -0.0007 0.9011
100 0.2309 1.0091 -0.9970 1.4524 -0.0014 0.6202
150 0.1267 0.2309 9.0971 1.2109 -0.0039 0.5400
200 0.4509 0.0091 3.0871 1.1102 -0.0017 0.3206
250 0.3201 0.0083 2.9811 1.0872 0.0014 0.2111
300 0.2134 0.0068 1.0987 0.0271 0.0010 0.1111
400 0.1009 0.0032 0.0389 0.0251 0.0009 0.1190
500 0.0981 0.0004 0.0010 0.0012 0.0001 0.0010

ii. Anderson-Darling Test (A)

A = A2
(

1 +
0.75

n
+

2.25

n2

)
.

where A2 = −n− 1
n

∑n
i=1{(2i− 1) log(ui) + (2n+ 1− 2i) log(1− ui)} and n is the sample size

iii. Akaike Information Criterion (AIC)

AIC = −2 log ∆(θ̂) + 2k.

where k is the number of parameters and ∆ be the maximum value of the model’s likelihood function

iv. Bayesian Information Criterion (BIC)

BIC = −2 log ∆(θ̂) + k log(n),

where ∆(·) is the number of estimated parameters, k is the value of the Log-likelihood function and n is
the sample size.

v. The corrected Akiake Information Criterion (AICc)

AICc = AIC +
2k(k + 1)

n− k − 1
,

where k is the number of estimated parameters in the model.
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7.1 Guinea pig data

In this section, the NEC distribution is applied to the guinea pigs data set [21, 22]. The data shows how long 72
guinea pigs survived after contracting virulent tubercle bacilli, measured in days. Also, the NEC distribution’s
suitability is evaluated in relation to a few alternative modifications of the Chen distribution.

Table 2. ML estimates and standard errors for Guinea pigs data

Model ML estimates Standard error
b d θ a b θ

NEC 0.4091 1.2108 11.7199 0.0634 0.2692 5.3382

Chen 0.2081 0.7592 – 0.0342 0.0431 –

Chen-logarithmic 0.2082 0.7584 1.0081 0.1312 0.0940 1.3951

Exponentiated Chen 0.9951 0.4441 7.2090 0.3061 0.0801 4.0951

MEC 0.9493 1.21864 1.21749 0.27382 0.13345 0.53810

Transmuted Chen 0.1171 0.8090 0.7531 0.0252 0.0452 0.2032

Marshall-Olkin Chen 0.0033 1.1311 0.0161 0.0011 0.0431 0.0062

From Table 2, the NEC distribution performs better than other candidate distributions, studeid in the paper in
terms of AIC, BIC, CAIC, KS, CVM and AD. Decision was taken based on the fact that NEC has the lowest
values of the AIC, BIC, CAIC and the highest p-value of AD, CVM and KS. This confirms that the NEC
distribution is more robust compared to the other six models studied.

Table 3. Goodness-of-fit statistics for Guinea pigs data

Model AIC BIC CAIC KS (P-Value) CVM AD

NEC 193.174 200.0039 193.5269
0.0824

(0.7114)
0.0831 0.5010

Chen 212.4820 217.0360 212.6560
0.1650
(0.040)

0.3670 2.1300

Chen-logarithmic 214.4820 221.312 214.8350
0.1650
(0.040)

0.3670 2.1300

Exponentiated Chen 194.3720 201.2020 194.7250
0.0900
(0.601)

0.0940 0.5852

MEC 242.1338 248.9638 242.4868
0.1962

(0.0078)
0.7665 4.7705

Transmuted Chen 211.2352 218.0651 211.5881
0.1581
(0.055)

0.3361 1.9501

Marshall-Olkin Chen 201.6521 208.4821 202.0053
0.1371
(0.134)

0.1992 1.1530
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Fitting the distributions considered for this data, the histogram with their respective fitting distribution is
revealed as shown in Fig. 3. It can be observed visually that the NEC distribution is more robust compared to
the data compared to other models.
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Fig. 3. Fitted PDFs for Guinea Pig data.

It can also be observed from Fig. (2) that amongst the CDF plots of all the distributions considered, the NEC
distribution fits the Guinea Pig data better than the other seven models as it follows the pattern closely.

7.2 Failure times of component data

The failure times data contains failure times of 50 components (per 1000 h) as reported in [23]. The essence of
failure times of component data is to determine the stability of components studied over time. In the field of
engineering identifying the right model in analysing these data is essential in understanding the reliability of the
components. In this section, we show that the NEC model is a better model for fitting failure times compared
to the other extensions of the Chen models.

The log-likelihood, information criterion, and goodness-of-fit statistics for asteroid densities are presented in
Table 5.

It is evident that the EMEC had the greatest L value and the lowest AIC, CAIC and BIC values among the
seven models stated.

The NEC distribution, on the other hand, has the smallest W, A, and KS values as well as the biggest associated
p-values.
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Fig. 4. Fitted CDFs for Guinea Pig data

Table 4. ML estimates and standard errors for failure times of component data.

Model ML estimates Standard error
b d θ a b θ

NEC 0.2077 0.865 12.4205 0.0231 0.1870 4.5864

Chen 0.1114 0.3550 – 0.0155 0.0123 –

Chen-logarithmic 0.1102 0.9014 1.1901 0.1012 0.0140 2.3951

Exponentiated Chen 8.0951 1.3441 5.2090 0.2061 0.1801 3.0951

MEC 0.7797 1.1879 10.6965 0.1643 0.1084 5.2352

Transmuted Chen 0.2170 0.9091 0.8131 0.0341 0.0982 0.1132

Marshall-Olkin Chen 0.0077 1.1333 0.9061 0.0011 0.1211 0.2322

In light of this information, the NEC distribution clearly outperforms the other seven alternative models in
terms of fitting asteroid densities.
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Table 5. Goodness-of-fit statistics for failure times of component data

Model AIC BIC CAIC KS (P-Value) CVM AD

NEC 826.5814 835.1375 826.7749
0.0406

(0.9841)
0.0333 0.2184

Chen 866.3251 872.0291 866.4211
0.1429

(0.0107)
0.6879 4.3879

Chen-logarithmic 840.0911 851.9781 840.2391
0.0591

(0.8871)
0.4056 0.4511

Exponentiated Chen 851.2675 854.9011 851.3781
0.0810

(0.8911)
0.8170 0.4331

MEC 871.5463 880.1023 871.7398
0.1147

(0.0688)
0.56881 3.7862

Transmuted Chen 881.7611 889.8221 881.8191
0.2391

(0.0990)
0.3381 1.9501

Marshall-Olkin Chen 869.9101 878.2311 869.0911
0.4311

(0.1566)
0.2312 1.8951

In Fig. 5, we show the estimated PDFs of all fitted distributions. It is clear that, the NEC distribution matches
the pattern of the asteroid densities data better than the other seven models, as shown in Fig. 5, which supports
the results in Table 5.
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Fig. 5.Fitted PDFs for failure times of component data

Similarly, Fig. 5 shows a plot of all competing distributions versus the emperical CDF of the observed data.
Fig. 5 shows the results of the analysis, which suggest that the NEC distribution is better suited to the data
than the other competing distributions.
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Fig. 6. Fitted CDFs for failure times of component data

8 Conclusion

An extension of the Chen distribution with three parameters is presented in this paper, and certain statistical
features, including the Beferroni and Lorenz curves, the ordinary and incomplete moments, and generating
functions are explored. The study also used the Maximum Likelihood estimation approach to estimate the
model parameters, and a simulation study was used to confirm their performance. To highlight the potentiality
of the suggested model, two applications to real data sets are compared to rival variants of the Chen distribution.
In both applications, the NEC distribution clearly revealed to be suitable for modelling survival and failure times
of data sets when compared using various goodness-of-fit tests.
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