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Obstructive sleep apnea (OSA) is a prevalent condition that negatively impacts

cardiovascular, metabolic and mental health. A high proportion of individuals

with OSA remain undiagnosed and incur significant healthcare costs. The gold

standard OSA diagnostic is in-lab polysomnography, but this is costly and

time-consuming. Home sleep apnea tests (HSATs), including cardiorespiratory

polygraphy and peripheral artery tonometry technology, provide an alternative.

Advances in HSAT technology include non-invasive, easy-to-use medical devices

that could allow unobtrusive, accessible, multi-night, cost-e�ective diagnosis and

management of sleep-disordered breathing. One type of these devices is based

on determination of peripheral arterial tone, and use photoplethysmography

signals from the finger (oxygen saturation, pulse wave amplitude and pulse rate).

The devices contain algorithms that use these data to generate the traditional

metrics required by the American Academy of Sleep Medicine. They can be

used to record sleep parameters over multiple nights at home, and can also

provide information on total sleep time (TST) and sleep stages (including time

spent in rapid eye movement sleep). The combination of objective measures

(apnea-hypopnea index, oxygen desaturation index, respiratory disturbance index,

TST) and subjective measures (symptoms and other patient-reported outcome

measures) could facilitate the development of a personalized therapeutic plan

for OSA patients. It is anticipated that the streamlined digital pathway facilitated

by new peripheral artery tone-based technology could contribute to reducing

the underdiagnosis of OSA, accelerating access to appropriate treatment, and the

optimization of OSA therapy.
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1. Introduction

Obstructive sleep apnea (OSA) is the most common form of
sleep-disordered breathing (SDB). It is characterized by partial
or complete upper airway obstructions that are associated with
intermittent hypoxia and transient arousals. The global prevalence
of OSA in middle-aged adults has been estimated to be nearly
one billion, with approximately half of these having moderate-to-
severe disease with an indication for treatment (Benjafield et al.,
2019).

OSA results in increased sympathetic activity, oxidative stress,
inflammation, endothelial and metabolic dysfunction, and is
associated with a variety of cardiovascular, cerebrovascular and
metabolic diseases, and increased all-cause mortality (Nieto et al.,
2000; Peppard et al., 2000; Kendzerska et al., 2014; Kent et al.,
2015; Linz et al., 2015; Reutrakul and Mokhlesi, 2017; Xie et al.,
2017; Mehra et al., 2022; Salari et al., 2022). Untreated OSA also
contributes to occupational and traffic accidents (Bioulac et al.,
2017; Hirsch Allen et al., 2020) and absence from work (Lallukka
et al., 2014), and has a negative impact on cognitive function
(Gnoni et al., 2023) and quality of life (Kerner and Roose, 2016;
Vinnikov et al., 2017; Alomri et al., 2021; Legault et al., 2021).

A high proportion of individuals with OSA remain
undiagnosed (Young et al., 1997; Kapur et al., 2002). This is
relevant from a health system perspective because a person with
OSA has been estimated to have double the annual healthcare costs
than someone without OSA (Kapur et al., 1999). Furthermore,
the diagnosis and treatment of OSA are associated with positive
economic benefit (Wickwire, 2021; Mattila et al., 2022; Sterling
et al., 2023).

2. OSA diagnosis

The current gold standard for diagnosing OSA is in-laboratory
polysomnography (PSG). PSG is a costly and time-consuming
process that requires highly trained personnel for set-up and
scoring, and therefore has limited availability. PSG is essential
in specific patient groups (e.g., those with comorbidities), but
the majority of individuals do not require PSG for diagnosis
of OSA. PSG is subject to the first-night effect and although
it can be performed over multiple nights and at home, this
is resource intensive and not feasible in the majority of cases,
which limits its ability to detect night-to-night variability in SDB
parameters (Newell et al., 2012). Therefore, there is a need for
OSA diagnostic tests that are more widely available, cost effective
and can be used for timely multi-night sleep testing, allowing
healthcare professionals to take care of all individuals referred for
evaluation or management of OSA. As a result, home sleep apnea
testing (HSAT) has become a routine approach for individuals
with suspected OSA. HSAT does not require supervision, is
less expensive than PSG and allows replication of sleep patterns
under “usual” conditions. Many PSG-validated HSAT devices are
available (e.g., level 3 cardiorespiratory polygraphy) that provide
adequate apnea-hypopnea index (AHI) estimation according to
the American Academy of Sleep Medicine (AASM) criteria for
sleep apnea diagnosis (Kapur et al., 2017; Rosen et al., 2018).
However, use of total recording time rather than total sleep time

(TST) to calculate respiratory indices may lead to important
underestimation of event rates (Escourrou et al., 2015; Massie
et al., 2022a). According to the AASM practical guidelines, both
polygraphy and peripheral artery tonometry-based HSATs can
be used for the diagnosis of sleep apnea (American Academy
of Sleep Medicine, 2023). There are two Conformité Europénne
(CE) mark and US Food and Drug Administration-approved,
commercially available peripheral artery tonometry-based HSAT
devices (NightOwl

R©
and WatchPAT

R©
).

2.1. Photoplethysmography and peripheral
arterial tonometry for detection of
respiratory events

Reflectance-based photoplethysmography (PPG) detects
pulsatile changes in blood volume in peripheral tissues and has
been defined as an important technology in sleep monitoring
devices (Ryals et al., 2023). Peripheral artery tonometry refers
to the determination of peripheral arterial vascular tone (the
net balance between vasoconstriction and vasodilation) using
PPG data. Peripheral artery tonometry measures pulsatile
volume changes in the digital vascular bed that are densely
innervated (Schnall et al., 1999; Zou et al., 2004). In the context
of OSA, there is increased sympathetic nervous system activity
near the end of a respiratory event (obstructive apnea). The
associated release of norepinephrine increases tone in the
peripheral arteries, resulting in vasoconstriction and a reduction
in the volume of blood displaced between systole and diastole.
By measuring this relative change in blood volume, sudden
changes in peripheral arterial tone that occur in response to
respiratory events can be detected (O’Donnell et al., 2002).
These pulse wave amplitude drops have been shown to be an
important biomarker of cardiometabolic risk and outcomes
(Hirotsu et al., 2020; Strassberger et al., 2021; Solelhac et al.,
2023).

Peripheral artery tonometry-based devices combine
information on changes in arterial volume with oxygen saturation
(SpO2; both from the PPG signal) with data on peripheral
arterial tone and heart rate (Yalamanchali et al., 2013; Massie
et al., 2018; Van Pee et al., 2022; Lyne et al., 2023). During
recording, a respiratory event is typically detected by analyzing
the co-occurrence of one or more of the following events:
oxygen desaturation; vasoconstriction (decreased peripheral
artery tonometry signal); and increased pulse rate. Based on these
data, peripheral artery tonometry devices contain proprietary
algorithms that generate the traditional metrics required by the
AASMManual for the Scoring of Sleep and Associated Events (e.g.,
AHI, respiratory disturbance index) (American Academy of Sleep
Medicine, 2023). The two currently available devices, NightOwl R©

and WatchPAT R©, have different proprietary algorithms and
technical specifications. Both have been validated against PSG (Zou
et al., 2006; Massie et al., 2018; Van Pee et al., 2022), and generally
show good agreement with PSG for parameters such as the AHI
and OSA severity (O’Brien et al., 2012; Yalamanchali et al., 2013;
Camilon et al., 2014; Choi et al., 2018; Ioachimescu et al., 2020;
Van Pee et al., 2022). Furthermore, information on sleep (e.g.,
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TST, time spent in rapid eye movement [REM] sleep, wake time)
can also be estimated using peripheral artery tonometry-based
devices (Hedner et al., 2011; Massie et al., 2018; Zhang et al.,
2020).

2.2. Detection of central sleep apnea and
REM sleep using peripheral artery
tonometry-based devices

Although OSA is the predominant sleep apnea subtype, central
sleep apnea (CSA) is another important form of SDB (Dempsey,
2019). The mechanisms underlying these two types of sleep
apnea are different, because CSA is characterized by a lack of
respiratory drive, while OSA result from a partial or complete
obstruction of the upper airways. In PSG, cessation of respiratory
drive or effort can be inferred from the abdominal and thoracic
respiratory effort belts. This information is not currently available
from peripheral artery tonometry-based devices, but could be
detected using fingertip PPG data. The fingertip PPG signal
inherently contains respiratory information because blood flow to
body extremities is influenced by alterations in thoracic pressure
throughout the respiratory cycle (Ryals et al., 2023). Therefore, the
PPG signal amplitude oscillates in synchrony with the respiratory
cycle. This amplitude modulation can be isolated to retain a signal
representing respiratory effort. The respiratory effort signal can
then be used to classify respiratory events as being of an obstructive
or central nature. Use of PPG has recently been shown to provide
useful data for the detection of CSA in individuals with suspected
sleep apnea (Sommermeyer et al., 2012; Massie et al., 2023).

Approximately 10%−36% of individuals with sleep apnea
have REM-predominant OSA (Alzoubaidi and Mokhlesi, 2016),
whereby SDB events are more pronounced during REM sleep
(Varga and Mokhlesi, 2019). These individuals are at high
risk for common OSA comorbidities, including atherosclerosis,
hypertension, metabolic syndrome and diabetes (Mokhlesi et al.,
2014; Acosta-Castro et al., 2018; Ljunggren et al., 2022). In order
to properly define this phenotype, it is essential to be able to
classify REM sleep with sufficient accuracy. Vasoconstrictions and
oxygen desaturations detected in peripheral artery tonometry and
SpO2 signal traces, respectively, show a different temporal pattern
between REM and non-REM sleep (Lavie et al., 2000; Dvir et al.,
2002; Herscovici et al., 2007; Choi et al., 2016). Furthermore, pulse
rate low frequency power has been shown to increase in REM
sleep (Chouchou and Desseilles, 2014). This means that PPG-based
techniques can be used to detect REM sleep (Lavie et al., 2000;
Zhang et al., 2020), although peripheral artery tonometry-based
HSAT has lower sensitivity for REM detection than PSG (Massie
et al., 2022b).

Overall, the ability of peripheral artery tonometry-based HSAT
devices to detect REM sleep and their potential to differentiate
between central and obstructive respiratory events increase the
utility and application of these devices across a range of SDB
types. They may also have clinical usefulness in individuals with
comorbidities such as atrial fibrillation (Tauman et al., 2020; Jensen
et al., 2023) and chronic obstructive pulmonary disease (Hansson
et al., 2023).

2.3. Multi-night sleep testing

A key advantage of a peripheral artery tonometry-based
approach is that it provides a convenient and low-cost option
for multi-night testing. This is important because evaluating
SDB over multiple nights provides a greater amount of data
on respiratory parameters. This may help to achieve a correct
diagnosis, and could allow evaluation of the evolution of sleep-
related breathing disorders over time during the application of
appropriate therapy. Peripheral artery tonometry devices are small,
and therefore allow more natural (e.g., less supine) sleep due to
the lack of cables compared with PSG. Furthermore, there is a
large body of evidence showing that there is substantial night-
to-night variation in sleep-related respiratory events, meaning
that a single night of monitoring may be insufficient to allow
reliable determination of sleep apnea severity at the individual
level, resulting in misclassification in a substantial proportion of
people (Punjabi et al., 2020; Roeder et al., 2020; Lechat et al.,
2022). Furthermore, emerging evidence suggests that large night-
to-night variability in sleep apnea severity (based on the AHI)
is a predictor of uncontrolled hypertension (Lechat et al., 2023),
and that sleep data from a single night of recording performed
worse than multi-night testing with respect to cardiovascular risk
prediction (Lechat et al., 2023). For data from multiple nights of
sleep testing (at least three nights in total, including one night
on the weekend), some experts believe that it is probably best to
use the highest AHI value recorded to provide guidance regarding
treatment initiation, rather than the average AHI. However, studies
are needed to validate this approach. In summary, the multi-night
monitoring capability of peripheral artery tonometry devices allows
patient sleep trajectories over time to be determined in an accessible
and acceptable manner, providing a clearer understanding of
sleep habits and allowing better shared decision-making and more
personalized therapy (Hrubos-Strøm et al., 2023; Lisik et al.,
2023).

3. OSA diagnostic and management
workflow using peripheral artery
tonometry-based devices

HSAT workflow is simple and can be implemented remotely.
However, a wider consideration is how new, multi-night, low-
touch tools such as peripheral artery tonometry devices can be
incorporated into the SDB patient pathway in a way that maximizes
benefits for the patient (optimizing diagnosis and therapy), for
healthcare professionals (time saving, reduced sleep lab workload,
patient-centered management), and for the healthcare system
(cost savings, resource optimization). As well as diagnosis, use of
simple, compact HSAT devices could contribute to improving the
efficiency of ongoing management of OSA therapies, including oral
appliances and positive airway pressure therapies. An integrated
and personalized diagnostic and therapeutic digital pathway
can be facilitated by the use of objective diagnostic measures
(AHI, oxygen desaturation index, sleep time, hypoxic burden),
subjective measures such as symptoms and patient-reported
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outcome measures, and the monitoring of therapy efficacy
(Figure 1).

For healthcare professionals, HSAT with a device that

uses peripheral artery tonometry (such as NightOwl
R©

and

WatchPAT
R©
) is considered to be less time consuming, allowing

more efficient patient management using a digital pathway without

any loss of diagnostic accuracy. Having a solution that can be

implemented remotely also allows more patients to be reached,
especially those who do not have easy access to a sleep laboratory or

sleep physician. In addition, the COVID-19 pandemic highlighted
the value of being able to continue healthcare evaluations and

treatment monitoring without face-to-face interaction between
healthcare professionals and patients (Bouloukaki et al., 2023).

Accurate, multi-night sleep testing information is a key
component that can help to drive much-needed personalized
approaches to the diagnosis and treatment of sleep apnea
(Arnardottir et al., 2022). While OSA may superficially be
considered as a single disease, there are a variety of diverse clinical
manifestations (or phenotypes) (Zinchuk et al., 2017; Duong-Quy
et al., 2022). The presence of different OSA phenotypes means that
a personalized, approach to the diagnosis and treatment of OSA
is required to optimize clinical outcomes for individual patients
(McNicholas and Korkalainen, 2023). The ability to detect different
sleep apnea phenotypes such as REM-predominant OSA and CSA
makes peripheral artery tonometry-based devices valuable tools for
facilitating this type of personalized treatment.

Another important consideration is the patient experience,
which is becoming increasingly recognized as a key measure
of health system performance (Jamieson Gilmore et al., 2023).
There are a number of features that would likely result in
a good experience for individuals being investigated for SDB

using peripheral artery tonometry-based devices. These include
the ability to perform sleep testing over multiple nights in the
home environment, simple device set-up, quick and reliable
event analysis. This approach is also ideally suited to facilitate
a P4 medicine approach to OSA—Predict; Prevent; Personalize;
Participate (Lim et al., 2017). Early and effective diagnosis
of OSA in otherwise healthy individuals would allow the
implementation of lifestyle interventions and early treatment that
could contribute to prevention of common OSA comorbidities
(i.e., primary prevention) (Yim-Yeh et al., 2010), facilitate
personalization of therapy options, and allow the individual to
participate in the diagnosis and monitoring of their condition.
Furthermore, simplicity and flexibility are important, especially for
the disabled, the elderly and for people who are less familiar with
new technologies.

4. Discussion

It has long been recognized that there is a lack of healthcare
resources to meet the clinical demands of individuals with sleep
apnea or suspected sleep apnea (Flemons et al., 2004; Pack, 2004).
Nevertheless, effective and timely diagnosis of OSA plays an
important role in preventing or limiting the negative health impacts
of this condition. Peripheral artery tonometry-based wearable
sleep testing devices that can be self-administered by the patient
and scored automatically using validated artificial intelligence and
machine learning-based algorithms have the potential to fill an
important gap in healthcare service provision, improve access to
diagnostic sleep studies and provide a cost-effective solution for
sleep apnea diagnosis and monitoring.

FIGURE 1

Toward a digital pathway for obstructive sleep apnea with peripheral arterial tone-based monitoring, from diagnosis to therapy management. AHI,

apnea-hypopnea index; CPAP, continuous positive airway pressure; ODI, oxygen desaturation index; PROM, patient-reported outcome measures;

REM, rapid eye movement.
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Compared with conventional PSG, the benefits of peripheral
artery tonometry-based wearable sleep testing devices include ease
of performing evaluations over multiple nights. In addition, there
will be savings in clinical staff time by avoiding complicated
inventory, on-site desktop software updates, and cleaning and
sterilization/disinfection procedures. However, these HSAT devices
do not record a direct measurement of flow so it is not possible
to distinguish between apneas and hypopneas (although both
are counted), and there is no EEG-based sleep-staging (although
information on sleep stages can be obtained by other means).
Furthermore, there are some settings where use of peripheral artery
tonometry may not be the most appropriate option. For example,
device performance could be adversely impacted by alternations in
the sympathetic response or impaired perfusion at the peripheral
tissue, such as during treatment with adrenergic systemmodulators
(e.g., alpha-adrenergic antagonists) (Zou et al., 2010) and in
individuals with clinically relevant peripheral vascular disease.
Thus, although alternative approaches to sleep apnea assessment
might be more appropriate in these groups, use of peripheral artery
tonometry-based devices to address the unmet need for better
approaches to OSA diagnosis for the majority of individuals would
allow in-demand sleep laboratory services to be prioritized formore
complex individuals (Fietze et al., 2022).

4.1. Looking to the (not too distant) future

Sleep medicine is a rapidly developing field, but the prevalence
of OSA is growing and the number of sleep specialists is
inadequate to meet the increasing need. This highlights the
need for initiatives such as new tools and telehealth to provide
safe, effective clinical care to an expanding group of patients
(O’Donnell et al., 2020). The move toward greater utilization
of telemedicine solutions was accelerated during the COVID-19
pandemic due to lockdowns and social distancing requirements
(Monaghesh and Hajizadeh, 2020). It makes sense to capitalize on
this momentum to improve the diagnosis andmanagement of SDB,
and simple, wearable devices based on measurement of peripheral
arterial tone, such as NightOwl

R©
and WatchPAT

R©
, can make an

important contribution to this. For instance, peripheral arterial
tone-basedHSATs can provide primary care professionals with easy
tools to diagnose OSA. These cloud-based multiple-night HSAT
technologies can be beneficial for communities without major
medical center for SDB management thus promoting equitable
SDB identification, diagnosis, and treatment (Gueye-Ndiaye et al.,
2023). Moreover, the technologies provide the possibility of
OSA screening in large populations and enable new approaches
for a simplified and automated OSA diagnostic procedure and
treatment follow-up. HSATs, wearable technologies and advances
in telemedicine may also help to strengthen inter-departmental
collaboration, thus improving the overall care of patients with OSA
(Mahoney, 2020; McNicholas and Pevernagie, 2022).

Overall, the possibility of integrating diagnostic, device therapy
and patient clinical data is attractive, and facilitates a more holistic
approach to patient management. New-generation wearable
devices that record a variety of signals to provide information

on sleep stage/quality, arousals, sleep position, and a variety of
SDB metrics (such as hypoxic burden) (Trzepizur et al., 2022)
will provide a more complete picture to inform clinical decision
making throughout the patient journey. Better understanding of
patient phenotypes will allow specific characteristics to be linked
to treatment outcomes (Mazzotti et al., 2019). The variety of
accurate data obtained from new connected devices could be used
to inform both diagnostics and clinical decision making based
on sleep-related breathing parameters, age, symptoms and risks
(Hajipour et al., 2023), and in accordance with current clinical
recommendations and guidelines (Patil et al., 2019; Randerath et al.,
2021; Grote et al., 2023). The new capabilities provided by new
technologies and innovations bring new capabilities, such as use of
the same device to diagnose sleep apnea and then monitor therapy
compliance and efficacy. For example, one currently available
peripheral artery tonometry-based device (NightOwl R©) has 10
nights of battery capacity. The ability to record over 10 consecutive
nights could allow three nights for diagnostic studies (AHI, oxygen
desaturation index, hypoxic burden and patient-reported outcome
measures) followed by sevn nights to implement and monitor
a personalized treatment plan, including assessment of changes
in hypoxic burden and patient-reported outcomes (Figure 1).
This could contribute to reducing the underdiagnosis of OSA,
accelerating access to appropriate treatment, and optimization of
OSA therapy.
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