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Abstract 
 

Discrete memory-free channels with a very low capacity are known as noisy channels. Our recent study has 

yielded some new insights into the channel capacity of noisy channels, which could prove useful in the 

development of mathematical models for these channels and other contexts. 

 

 
Keywords: Non Shannon entropy; channel capacity; weighted entropy; conditional entropy; mutual 

information; information theory etc. 
 

1 Introduction 
 

By definition, noisy channels are discrete memory-less channels with low capacity. These channels were 

initially created by Reiffen [1] to explore physical channels operating at low ratios. Researchers [2-4] have 
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demonstrated that even in cases where channels are merely functioning at low capacity, these channels 

nonetheless play a significant role in communication. Majani [5] provided a broad mathematical model of noisy 

channels and demonstrated that Reiffen's description does not apply to all channels with low capacity. In his 

classification of noisy channels, he distinguished between two types: type I and type II. All of the Type I Noisy 

Channels fall within Reiffen's description. Certain Type II Noisy Channels, such as the noisy Z channel, are not 

covered by Reiffen's definition. Our effort will mostly concentrate on Reiffen's Type I Noisy Channels. 

 

Let as assume that there is a discrete memory less channel with input and output alphabets of 𝑋  and 𝑌 

respectively, input probabilities𝑃(𝑥), output probabilities𝑃(𝑦), and transition probabilities 𝑃(𝑦 𝑥⁄ ), and both 𝑋 

and 𝑌 are taken to be finite. Reiffen states that the channel is extremely loud if, for all 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, then we 

have 

 
𝑃(𝑦)−𝑃(𝑦 𝑥⁄ )

𝑃(𝑦)
= 𝜀𝑥(𝑦) ≪ 1                                                        (1.1)  

 

Equation (1.1) also written as 

 

𝑃(𝑦 𝑥⁄ ) = 𝑃(𝑦)(1 − 𝜀𝑥(𝑦))                                                           (1.2) 

 

We observe that 

 
∑ 𝑃(𝑥)𝑥∈𝑋 𝜀𝑥(𝑦) = 0 and ∑ 𝑃(𝑦)𝜀𝑥(𝑦) = 0𝑦∈𝑌                                           (1.3) 

 

with 𝜀𝑥(𝑦) ≪ 1.  Later, Gallager [6] proposed that 𝑃(𝑦)  need only be an approximation of the output 

probabilities rather than the output probabilities itself. 

 

Information theory has been very helpful for researching information transfer through noisy communication 

channels [7] because it offers a flexible mathematical framework of Such paths for communication. The 

concepts of entropy [6], mutual information [6], parametric measures [8-10], multivariate normal distribution 

[11], divergence [12], directed divergence [13-15], quantitative-qualitative measure [16,17], exponential entropy 

functional [18 and 19] and many others are derived from information theory. Their generalisations [20, 21, and 

22] have been used in the areas of pattern recognition and medical diagnostics, among others. According to 

Shannon [6], communication over a discrete memoryless channel is always possible as long as the channel 

capacity is non-zero. The entropy function described by Shannon [23] is given by 

 

𝐻𝑃(𝑋) = − ∑ 𝑃(𝑥)𝑙𝑛𝑃(𝑥)𝑥∈𝑋          

                                                        

The generalised Rènyi entropy can be expressed as follows: 

 

𝐻𝑃(𝑋) =
1

1−𝛼
 𝑙𝑛 (∑ 𝑃𝛼(𝑥)),   𝛼 > 0𝑥𝜖𝑋 .                                            (1.4) 

 

It represents the degree of uncertainty about the input alphabet 𝑋. Similar to the output alphabet 𝑌 level of 

uncertainty can be expressed as 

 

𝐻𝑃(𝑌) =
1

1−𝛼
𝑙𝑛 (∑ 𝑃𝛼(𝑦)),   𝛼 > 0𝑥𝜖𝑋 .                                              (1.5)       

                                     

 𝑋 and 𝑌 are discrete random variables so joint entropy function is given as 

 

𝐻𝑃(𝑋, 𝑌) =
1

1−𝛼
 𝑙𝑛 (∑ ∑ 𝑃𝛼(𝑥, 𝑦)𝑦∈𝑌𝑥∈𝑋 )                                                     (1.6) 

 

The conditional entropy are defined as 

 

𝐻𝑃(𝑋 𝑌⁄ ) =
1

1−𝛼
 𝑙𝑛 (∑ ∑ 𝑃𝛼(𝑥 𝑦⁄ ))𝑦∈𝑌𝑥∈𝑋                                                                  (1.7) 

 

𝐻𝑃(𝑌 𝑋⁄ ) =
1

1−𝛼
 𝑙𝑛 (∑ ∑ 𝑃𝛼(𝑦 𝑥⁄ ))𝑦∈𝑌𝑥∈𝑋                                                                 (1.8) 
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The channel capacity C is given by the equation 

 

  𝐶 = max
𝑃(𝑥)

𝐼(𝑋, 𝑌)                                                                                                    (1.9) 

 

where 𝐼(𝑋, 𝑌) is mutual information which was given about X by Y or Y by X and is given by 

 

𝐼(𝑋, 𝑌) = 𝐻𝑃(𝑌) − 𝐻𝑃(𝑌 𝑋⁄ ) = 𝐻𝑃(𝑋) − 𝐻𝑃(𝑋 𝑌⁄ ) = 𝐼(𝑌, 𝑋)                                 (1.10) 

 

The Shannon entropy function additive property is defined by the fact that the information gain function is 

logarithmic.  

 

The weighted entropy was proposed by Munteanu and Tarniceriu [24] which form is 

 

 𝐻𝑃𝑐(𝑋) =
𝛾

1−𝛼
 𝑙𝑛 ∑ 𝑃𝛼(𝑥) + 𝛿𝑥𝜖𝑋 ∑ 𝑃(𝑥)𝑐(𝑥)𝑥𝜖𝑋                                     (1.11) 

 

where 𝑐(𝑥)  denotes the weights assigned to the input alphabet X, with 𝛼  and 𝛽  standing in for arbitrary 

constants that will be decided by boundary conditions. The weighted variants of (5), (6), (7), and (8) are defined 

similarly as 

 

𝐻𝑃𝑐(𝑌) =
𝛾

1−𝛼
 𝑙𝑛 ∑ 𝑃𝛼(𝑦) + 𝛿 ∑ 𝑃(𝑦)𝑐(𝑦)𝑦∈𝑌𝑦∈𝑌                                                   (1.12) 

 

𝐻𝑃𝑐(𝑋, 𝑌) =
𝛾

1−𝛼
 𝑙𝑛 ∑ ∑ 𝑃𝛼(𝑥, 𝑦) + 𝛿 ∑ ∑ 𝑃(𝑥, 𝑦)𝑐(𝑥, 𝑦)𝑦∈𝑌𝑥∈𝑋𝑦∈𝑌𝑥∈𝑋                                       (1.13) 

 

𝐻𝑃𝑐(𝑋 𝑌⁄ ) =
𝛾

1−𝛼
𝑙𝑛 ∑ ∑ 𝑃𝛼(𝑥 𝑦⁄ ) + 𝛿 ∑ ∑ 𝑃(𝑥, 𝑦)𝑐(𝑥 ∕ 𝑦)𝑦𝜖𝑌𝑥𝜖𝑋𝑦𝜖𝑌𝑥𝜖𝑋                             (1.14) 

 

𝐻𝑃𝑐(𝑌 𝑋⁄ ) =
𝛾

1−𝛼
𝑙𝑛 ∑ ∑ 𝑃𝛼(𝑦 𝑥)⁄ + 𝛿 ∑ ∑ 𝑃(𝑥, 𝑦)𝑐(𝑦 ∕ 𝑥)𝑦𝜖𝑌𝑥𝜖𝑋𝑦𝜖𝑌𝑥𝜖𝑋                                          (1.15) 

 

The channel capacity of weighted entropy is given as  
 

𝐶 = max
𝑃(𝑥)

𝐼(̅𝑋, 𝑌) = max
𝑃(𝑥)

(𝐻𝑃𝑐(𝑌) − 𝐻𝑃𝑐(𝑌 𝑋⁄ )) = max
𝑃(𝑥)

(𝐻𝑃𝑐(𝑋) − 𝐻𝑃𝑐(𝑋 𝑌⁄ ))                              (1.16) 

 

The physical importance of the quantity 𝐸0 = − ln ∫ (∫ 𝑝(𝑥)(𝑝(𝑦|𝑥))
1

2𝑑𝑥)
2

𝑑𝑦 is substantial. The exponent in 

the upper bound of the error probability that corresponds to a zero rate is denoted as E_0. The generalization to 

discrete input-continuous output channels is simple in the  case of discrete channels, though. 𝑅𝑐𝑜𝑚𝑝 , the 

calculation cutoff rate for the sequential decoding process, is defined. The average amount of decoding 

computations grows algebraically with constraint length rather than exponentially for rates less than 𝑅𝑐𝑜𝑚𝑝 . 

According to Reiffen, 𝑅𝑐𝑜𝑚𝑝 ≤ 𝐸0 for discrete input channels. Verma [8, 14] has made numerous attempts to 

define the weighted generalizations of the Shannon entropy function presented above; nevertheless, we have 

taken into consideration the weighted measure provided by (1.12). The channel capacity of class I VNCs was 

also determined by Reiffen [1] and was expressed as 𝐶 =
1

2
(∑ ∑ 𝑝(𝑥)𝑝(𝑦)𝜀𝑥

2(𝑦)𝑦∈𝑌𝑥∈𝑋 ), 𝜀𝑥(𝑦) ≪ 1components 

in this equation are correct up to the second order. We have determined the weighted channel capacity of 

Reiffen's Class I VNCs in the current work. We have also used the Non-Shannon entropy provided by (1.12) to 

evaluate the channel capacity.   
 

2 Our Results 
 

2.1 Channel capacity of weighted entropy function 
 

The weighted conditional entropy given by (1.15) is  
 

𝐻𝑃𝑐(𝑌 𝑋⁄ ) =
𝛾

1 − 𝛼
𝑙𝑛 ∑ ∑ 𝑃𝛼(𝑦 𝑥)⁄ + 𝛿 ∑ ∑ 𝑃(𝑥, 𝑦)𝑐(𝑦 ∕ 𝑥)

𝑦𝜖𝑌𝑥𝜖𝑋𝑦𝜖𝑌𝑥𝜖𝑋
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If alphabet 𝑥𝜖𝑋 is assumed to represent the source codewords and the corresponding weights to be the codeword 

length, then the constants 𝛾 and 𝛿 both take values of -1[23] . 

 

We have, 

 

𝐻𝑃𝑐(𝑌 𝑋⁄ ) =
−1

1 − 𝛼
𝑙𝑛 ∑ ∑ 𝑃𝛼(𝑦 𝑥)⁄ − ∑ ∑ 𝑃(𝑥, 𝑦)𝑐(𝑦 ∕ 𝑥)

𝑦𝜖𝑌𝑥𝜖𝑋𝑦𝜖𝑌𝑥𝜖𝑋

 

𝐻𝑃𝑐(𝑌 𝑋⁄ ) =
−𝛼

1 − 𝛼
∑ ∑ 𝑙𝑛 𝑃(𝑦 𝑥)⁄ − ∑ ∑ 𝑃(𝑥, 𝑦)𝑐(𝑦 ∕ 𝑥)

𝑦𝜖𝑌𝑥𝜖𝑋𝑦𝜖𝑌𝑥𝜖𝑋

 

𝐻𝑃𝑐(𝑌 𝑋⁄ ) =
−𝛼

1 − 𝛼
∑ ∑ 𝑙𝑛 𝑃(𝑦 𝑥)⁄ − ∑ ∑ 𝑃(𝑥)𝑃(𝑦 𝑥⁄ )𝑐(𝑦 ∕ 𝑥)

𝑦𝜖𝑌𝑥𝜖𝑋𝑦𝜖𝑌𝑥𝜖𝑋

 

  =
−𝛼

1 − 𝛼
∑ ∑ 𝑙𝑛 (𝑃(𝑦)(1 − 𝜀𝑥(𝑦)) − ∑ ∑ 𝑃(𝑥)𝑃(𝑦)(1 − 𝜀𝑥(𝑦))𝑐(𝑦 ∕ 𝑥)

𝑦𝜖𝑌𝑥𝜖𝑋𝑦𝜖𝑌𝑥𝜖𝑋

 

 

Using the formula 

 

𝑙𝑛(1 − 𝛼) = −𝛼 −
𝛼2

2
−

𝛼3

3
… 

 

We get 

 

𝐻𝑃𝑐(𝑌 𝑋⁄ ) =
−𝛼

1−𝛼
[∑ ∑ 𝑙𝑛𝑃(𝑦) − 𝜀𝑥(𝑦) −

𝜀𝑥
2(𝑦)

2
− ⋯ ⋯ ⋯𝑦𝜖𝑌𝑥𝜖𝑋 ] − ∑ 𝑃(𝑥)𝑥∈𝑋 ∑ 𝑃(𝑦)𝑐(𝑦 𝑥⁄ ) +𝑦∈𝑌

∑ ∑ 𝑃(𝑥)𝑃(𝑦)𝜀𝑥(𝑦)𝑐(𝑦 𝑥⁄ )𝑦∈𝑌𝑥∈𝑋                       (2.1) 

 

We have [20], for  noisy channels, 

 

𝑐(𝑦 𝑥⁄ ) = 𝑐(𝑦) and 𝑐(𝑥 𝑦⁄ ) = 𝑐(𝑥)                                                                                (2.2) 

 

After some basic changes and using (1.3) and (2.2) in (2.1), we obtain 

 

𝐻𝑃𝑐(𝑌 𝑋⁄ ) =
−𝛼

1 − 𝛼
[∑ ∑ 𝑙𝑛𝑃(𝑦) − 𝜀𝑥(𝑦) −

𝜀𝑥
2(𝑦)

2
− ⋯ ⋯ ⋯

𝑦𝜖𝑌𝑥𝜖𝑋

] − ∑ ∑ 𝑃(𝑥)𝑃(𝑦)𝑐(𝑦)

𝑦∈𝑌𝑥∈𝑋

 

 

The channel capacity of weighted entropy defined as 

 

𝐶 = max
𝑃(𝑥)

𝐼 ̅ (𝑋, 𝑌) = max
𝑃(𝑥)

(𝐻𝑝𝑐(𝑌) − 𝐻𝑃𝑐(𝑌 𝑋⁄ ))        

 

𝐶 = max
𝑃(𝑥)

[∑ 𝑃(𝑦)𝑐(𝑦)(∑ 𝑃(𝑥) − 1) +
𝛼

𝛼−1
(𝜀𝑥(𝑦) +

𝜀𝑥
2(𝑦)

2
)𝑥∈𝑋𝑦∈𝑌 ]                                                   (2.3) 

 

This is the required channel capacity of weighted entropy function.where the terms in equation (2.3) are true up 

to the second order of 𝜀𝑥(𝑦) ≪ 1 .    
  

3 Conclusion  
 

Here, we evaluated the equations for the channel capacity of Type I Noisy Channels using the weighted 

conditional entropy for Non-Shannon entropy. By applying Majani's Type II Noisy Channels specification, 

comparable results might be achieved [12]. 
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