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Abstract: A fundamental problem at the intersection of process control and operations is the design
of detection schemes monitoring a process for cyberattacks using operational data. Multiplicative
false data injection (FDI) attacks modify operational data with a multiplicative factor and could
be designed to be detection evading without in-depth process knowledge. In a prior work, we
presented a control mode switching strategy that enhances the detection of multiplicative FDI attacks
in processes operating at steady state (when process states evolve within a small neighborhood of the
steady state). Control mode switching on the attack-free process at steady-state may induce transients
and generate false alarms in the detection scheme. To minimize false alarms, we subsequently
developed a control mode switch-scheduling condition for processes with an invertible output matrix.
In the current work, we utilize a reachable set-based detection scheme and use randomized control
mode switches to augment attack detection capabilities. The detection scheme eliminates potential
false alarms occurring from control mode switching, even for processes with a non-invertible output
matrix, while the randomized switching helps bolster the confidentiality of the switching schedule,
preventing the design of a detection-evading “smart” attack. We present two simulation examples to
illustrate attack detection without false alarms, and the merits of randomized switching (compared
with scheduled switching) for the detection of a smart attack.

Keywords: cyberattack detection; multiplicative false data injection attacks; randomized control
mode switching

1. Introduction

Process control systems (PCSs) are cyber-physical systems that operate chemical man-
ufacturing processes and may utilize networked communication to integrate the cyber
components (e.g., controllers and human machine interfaces) with the physical components
(e.g., sensors and actuators). Cyberattacks on PCSs involve malicious incursions into the
PCS network with the objective of modifying the process operational data transferred over
the communication channels linking the sensors to the controller and/or the communi-
cation channels linking the controller to the actuators. Cyberattacks have increased in
frequency over the past decade [1]. A loss of control in critical infrastructure, like chemical
manufacturing processes, due to cyberattacks may have disastrous consequences, and
therefore, the research focused on the enhancement of PCS cybersecurity has become
increasingly important [2].

Due to the interconnected nature of a cyber-physical system like a PCS, a comprehen-
sive solution to enhancing the cybersecurity of PCSs may involve adopting a multi-faceted
approach that involves both information technology-based and operational technology-
based approaches. The approaches proposed in the literature broadly include those that
reinforce information technology-based infrastructure (e.g., firewalls [3] and network
design-based approaches [4,5]), approaches that involve cybersecure architecture design
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(e.g., [6]), approaches for process equipment design to mitigate adverse impacts of a cy-
berattack (e.g., [7,8]), and the design of operational technology (OT)-based approaches for
detecting, identifying, and successfully recovering from an ongoing cyberattack [6,9–20].

The design of approaches to enable the detection of an ongoing cyberattack in par-
ticular has received significant attention. Several approaches have been proposed in the
literature. Examples include detection schemes that monitor the values of a residual (de-
fined as a vector that is the difference between a measured variable and its estimated
value) and detect an attack if the residual breaches a certain threshold. Other examples
include set membership-based detection schemes that monitor a process by confirming
that the residual values are contained within a set that describes all possible attack-free
values of the residual [14,16]. Machine learning-based approaches have also been used as
methods for cyberattack detection [6,17]. Other examples include residual-based detection
strategies that are designed to detect an attack if the attack causes the process states to
leave a safe operating region [10–12]. Attack detection approaches that utilize random
authentication signals to the manipulated input to add a perturbation to the process and
reveal the presence of an attack [21–25] have also been proposed. The approach chosen for
attack detection may depend on the type of attack to be detected. False data injection (FDI)
attacks aim to compromise the integrity of the PCS by maliciously modifying the data over
the communication channels [26,27]. Multiplicative FDI attacks alter the value of process
variables over the PCS network using a multiplicative factor. These attacks can be designed
to evade detection without requiring extensive process knowledge, and the design of
approaches for their detection has received some attention in the literature [13,15,16,23–25].

In this work, we use a reachable set-based detection scheme [14] that tracks the
evolution of some monitoring variable with respect to the evolution of the reachable sets of
the attack-free process to detect an attack. The reachable sets take account of the attack-free
process behavior during transient operation, and therefore the detection scheme utilizing
the reachable sets generates no alarms when monitoring the process under control mode
switching in the absence of attacks. The reachable set-based detection scheme makes
no assumptions on the structure of the output matrix, and generates no alarms when
monitoring processes with non-invertible output matrices under control mode switching
in the absence of attacks. To detect a range of multiplicative FDI attacks, we propose a
randomized switching-enabled cyberattack detection method under which the control
mode is switched at randomly chosen switching instances. Randomization to enhance the
cybersecurity of a control system has received some attention in the literature [22,23,28,29].
However, randomization to enhance the cybersecurity of a detection scheme has not been
explored. Under our proposed randomized switching-based detection method, the control
mode switching instances are randomly chosen to confound an attacker aiming to learn the
switching schedule. Without complete knowledge of the switching schedule, an attacker
may not be able to design a “smart” attack that is capable of evading detection, thereby
enhancing the cybersecurity of the detection method.

The remainder of the paper is organized as follows: in Section 2, we present some
preliminaries and discuss the class of processes and the attack model. Following this, in
Section 3, we characterize the interdependence between the control parameters, the closed-
loop stability of the process, and the detectability of a multiplicative attack with respect to
the reachable set-based detection scheme. We propose a control mode switching-enabled
method for the detection of multiplicative FDI attacks on a process under transient opera-
tion. We then present theoretical results to demonstrate that the randomized switching-
enabled attack detection method guarantees a zero false alarm rate from multiple successive
control mode switches on the process under transient operation without requiring that
the output matrix be invertible. We discuss some implementation considerations and
present algorithms for two variations of the switching-enabled attack detection method. In
Section 4, we apply the detection method over simulations using two illustrative examples
and demonstrate that the method guarantees attack detection while generating no false
alarms when monitoring the process in the absence of attacks. Finally, using simulations
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of the second illustrative example, where we apply the detection method to a chemical
process operated at its steady state, we demonstrate that for the detection of a smart attack,
the randomized switching-enabled attack detection method may be preferable to a method
using scheduled control mode switches.

2. Preliminaries
2.1. Notation

Z+ is the set of non-negative integers. Rn is the n-dimensional Euclidean space.

Given a vector x = [x1 x2 . . . xn]T ∈ Rn, ∥x∥ =
√

∑n
i=1(xi)2 is its Euclidean norm and

∥x∥∞ = maxn
i=1|xi| is its ∞-norm. For a square matrix A ∈ Rn×n, its spectral radius is

defined as ρ(A) = max{|λ1|, |λ2|, . . . , |λn|}, where λi is the ith eigenvalue of the matrix
A. The Minkowski sum of two sets X ⊂ Rn and Y ⊂ Rn is defined as X ⊕ Y = {x + y |
x ∈ X , y ∈ Y}. Given a matrix A ∈ Rm×n and a set X ⊂ Rn, AX = {Ax | x ∈ X} is the
linear map of the set X . Given a matrix A ∈ Rm×n and a set X ⊆ Rn,

⊕t
i=0 AiX represents

the series X ⊕ AX ⊕ · · · ⊕ AtX . Given a vector x ∈ Rn, an n-dimensional polytope is a
bounded region in the Euclidean space that satisfies the linear matrix inequalities Ax ≤ b,
where A ∈ Rm×n is a matrix and b ∈ Rm×1 is a vector. A zonotope is a convex polytope
that is symmetric about its center and may be formally defined as the Minkowski sum of a
finite set of line segments [30].

2.2. Class of Processes

In this work, we consider processes that are modeled by discrete-time linear time-
invariant systems of the form:

xt+1 = Axxt + Buut + Bwwt (1a)

yt = Cxxt + vt (1b)

where xt ∈ Rnx and ut ∈ Rnu for all t ∈ Z+ are the vectors representing the process states
and manipulated inputs, respectively, and the measured output is yt ∈ Rny with ny ≤ nx.
The process is subject to bounded process disturbances and measurement noise, where
wt ∈ W ⊂ Rnx and vt ∈ V ⊂ Rny are the vectors representing the bounded process
disturbances and measurement noise. The compact setsW and V are assumed to be known
polytopes. Ax ∈ Rnx×nx , Bu ∈ Rnx×nu , Bw ∈ Rnx×nw , and Cx ∈ Rny×nx are matrices.

To estimate the process states, a Luenberger observer is utilized:

x̂t+1 = Ax x̂t + Buut + L(yt − ŷt) (2a)

ŷt = Cx x̂t (2b)

where x̂t ∈ Rnx and ŷt ∈ Rny for all t ∈ Z+ are the estimates of the process states and the
measured outputs generated by the observer. The observer gain L ∈ Rnx×ny is chosen such
that all eigenvalues of the matrix A− LC are strictly within the unit circle. The estimates
of the process states generated by the observer are utilized to compute the control action
as follows:

ut = −Kx̂t (3)

where K ∈ Rnx×nu is the gain of the feedback controller, which is chosen to ensure that all
eigenvalues of the matrix A− BK are contained strictly inside the unit circle.

The discrepancy between the process states and their estimates generated by the
observer is defined as the estimation error (e := x− x̂) and has the dynamics:

et+1 = (Ax − LCx)et + Bwwt − Lvt (4)

The dynamics of the overall closed-loop process are collectively described by the
evolution of the process states and the estimation errors, which we analyze using an
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augmented state ξ = [xT eT ]T , which consists of the process states and estimation errors.
The dynamics of the closed-loop augmented state are governed by:

ξt+1 =

[
Ax − BuK BuK

0 Ax − LCx

]
︸ ︷︷ ︸

Aξ (K,L)

ξt +

[
Bw 0
Bw −L

]
︸ ︷︷ ︸

Bd(L)

dt (5)

where dt := [wT
t vT

t ]
T is an augmented disturbance vector, which consists of the process dis-

turbances and measurement noise and is bounded within the compact set D := {[wT vT ]T |
w ∈ W , v ∈ V}. Without loss of generality, the origin is assumed to be the steady state of
the process.

In the remainder of the paper, the term “attack-free closed-loop process with (K, L)
and a set of initial statesRξ

0” is used to refer to the process with augmented state dynamics,
as in Equation (5). In this work, we consider process transients during which the states
of the closed-loop process in Equation (5) evolve from a compact set of initial states
(ξ0 ∈ Rξ

0 ⊂ R2nx ). For the closed-loop process with (K, L), its t-step reachable set is defined
as the set of all states that can be reached in t time steps from the set of initial statesRξ

0 and
under all admissible disturbances [31]. The t-step reachable set of the closed-loop process
may be computed using the following relationship:

Rξ
t (K, L) = Aξ(K, L)Rξ

t−1(K, L)⊕ Bd(L)D, for t > 0 (6)

From Equation (6), the t-step reachable set is dependent on the set of initial statesRξ
0,

the control parameters (K, L), the time step t ∈ Z+, and the set of bounded disturbances
D. For a concise representation, in this work, we highlight the dependence of the t-
step reachable set on the control parameters only. When the closed-loop process with
(K, L) is stable with ρ(Aξ(K, L)) < 1, its augmented state is ultimately bounded within
the minimum invariant set of the process, which is the limit set of all trajectories of the
process [32]. The minimum invariant set, which contains all possible values of augmented
state of the closed-loop process under steady-state operation can be expressed as [33]:

Rξ
∞(K, L) =

∞⊕
i=0

Aξ(K, L)iBd(L)D (7)

2.3. Class of Multiplicative False Data Injection Attacks

In this work, we consider the detection of multiplicative false data injection (FDI)
attacks that simultaneously alter the data communicated over the sensor–controller and
controller–actuator links of the PCS network. The falsified data are represented as follows:

ya
t = Λyyt (8a)

ua
t = Λuut (8b)

where βa
t ∈ Rnβ is the value of β ∈ Rnβ that is modified by the attack, Λβ ̸= I is the

pre-multiplicative factor that alters the value of β in the presence of an attack. If β = y,
the attack alters the value of the measured output communicated to the controller, and if
β = u, the attack alters the value of the manipulated input communicated to the control
actuators. In the presence of an attack, ua is the implemented control action that is used by
the observer in Equation (2a) to generate estimates of process states. An attack alters the
closed-loop process dynamics in Equation (5) as follows:

ξt+1 =

[
Ax − BuΛuK BuΛuK
L(I −Λy)Cx Ax − LCx

]
︸ ︷︷ ︸

Aξa (K,L)

ξt +

[
Bw 0
Bw −LΛy

]
︸ ︷︷ ︸

Bda (L)

dt (9)
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In the remainder of the paper, the term “attacked closed-loop process with (K, L) and
a set of initial states Rξ

0” is used to refer to the process under an attack with augmented
state dynamics, as in Equation (9). The t-step reachable set of the augmented state for the
process under an attack with (K, L) and a set of initial statesRξ

0 may be computed per the
following relationship [31]:

Rξa
t (K, L) = Aξa(K, L)Rξa

t−1(K, L)⊕ Bda(L)D, for t > 0 (10)

where the subscript “a” to the variable (e.g.,Rξa
t (K, L), Aξa , and Bda ) indicates the presence

of an attack. The minimum invariant set of the attacked closed-loop process with (K, L)
stable in the sense that ρ(Aξa(K, L)) < 1, may be expressed (similar to Equation (7)) as:

Rξa
∞ (K, L) =

∞⊕
i=0

Aξa(K, L)iBda(L)D (11)

2.4. Class of Detection Schemes Utilizing Reachable Sets

In the presence of an attack on the process, the augmented state values may deviate
from their expected values for the attack-free process, meaning that an anomaly in the
augmented state value, if detected, may indicate the presence of an attack. However, the
augmented state cannot be measured, and standard anomaly detection schemes monitor a
process based on values of a monitoring variable that are a function of the augmented state.
Commonly used monitoring variables include the measured output y = [Cx 0]ξ + [0 I]d,
the estimated output ŷ = [Cx −Cx]ξ, or the residual, which may be defined as r := y− ŷ =
[0 Cx]ξ + [0 I]d. The ability of a detection scheme to detect an attack may vary with the
monitoring variable used. For example, detection of some attacks may be possible when
the detection scheme uses the residual to monitor the process; however, these attacks may
go undetected when the detection scheme uses the measured output. This realization
motivated the formulation of a generalized monitoring variable in [13,14] which may be
expressed in terms of the measured and estimated outputs as:

ηt = Hyyt + Hŷŷt (12)

where Hy and Hŷ are design parameters that dictate the choice of the monitoring variable.
The monitoring variable η is a design parameter for a detection scheme that takes the form
of Equation (15), in the sense that each choice of the monitoring variable gives a different
reachable set-based detection scheme. For example, if Hy = [Cx 0] and Hŷ = [0 I], then
η = y, and if Hy = [0 Cx] and Hŷ = [0 I], then η = r.

In view of the definitions of the augmented state and disturbance vectors, the moni-
toring variable may be expressed as a linear combination of the augmented state and the
disturbance vector as follows:

ηt = [(Hy + Hŷ)Cx − HŷCx]︸ ︷︷ ︸
:=Cη

ξt + [0 Hy]︸ ︷︷ ︸
:=Dη

dt (13)

For the closed-loop process with (K, L) and a set of initial statesRξ
0, all possible values

of the monitoring variable are bounded within the t-step reachable sets for all t ∈ Z+. From
Equation (13), the t-step reachable set of the monitoring variable depends on the control
parameters (K, L), the set of initial statesRξ

0, and the set D and may be computed per the
following relationship:

Rη
t (R

ξ
t (K, L)) = CηRξ

t (K, L)⊕ DηD (14)
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In this work, we use a class of detection schemes that track the evolution of the
monitoring variable at each time step with respect to the reachable sets of the attack-free
process at that time step [14]. The detection logic is given by:

ϕt(ηt) =

{
0, ηt ∈ Rη

t (R
ξ
t (K, L))

1, ηt ̸∈ Rη
t (R

ξ
t (K, L))

(15)

where ϕt(ηt) is the output of the detection scheme. A value of ϕt(ηt) = 1 at time step
t ∈ Z+ indicates that the detection scheme generates an alarm because an attack has been
detected, while a value of ϕt(ηt) = 0 indicates that no alarm is raised because an attack has
not been detected. For a concise presentation of the results, we will refer to the detection
scheme described by Equation (15) as the reachable set-based detection scheme. The
reachable set-based detection scheme guarantees a zero false alarm rate during transient
process operation because it accounts for the evolution of the monitoring variable of the
attack-free process.

In [14], we presented a method for the classification of attacks on the basis of their
detectability, which we defined as the ability of the detection scheme in Equation (15) to
detect an attack. Here, we present an overview of the detectability-based attack classifi-
cation method. If an attack on the closed-loop process with (K, L) and the set of initial
statesRξ

0 is detected by the detection scheme in finite time, the attack is called a detectable
attack. Attacks that cannot be detected by the detection scheme in finite time are called
undetectable attacks. Finally, a potentially detectable attack is any attack that cannot be
classified as either detectable or undetectable.

For the process under attack, the reachable sets for the monitoring variable are
given by:

Rηa
t (Rξa

t (K, L)) = CηaRξa
t (K, L)⊕ DηaD (16a)

ηa
t = [(HyΛy + Hŷ)Cx − HŷCx]︸ ︷︷ ︸

:=Cηa

ξt + [0 HyΛy]︸ ︷︷ ︸
:=Dηa

dt (16b)

It should be noted that, for the stable closed-loop system (both in the presence and
in the absence of an attack), the monitoring variable is ultimately bounded within the
minimum invariant set. The minimum invariant set of the monitoring variable is computed
based on the minimum invariant set of the augmented state and the disturbance set, using
the following relationship:

Rη
∞(K, L) = CηRξ

∞(K, L)⊕ DηD

Rηa
∞ (K, L) = CηaRξa

∞ (K, L)⊕ DηaD

whereRη
∞(K, L) andRηa

∞ (K, L) are the minimum invariant sets of the monitoring variable
for the attack-free and attacked processes, respectively. In the remainder of the paper, to
distinguish these minimum invariant sets from those associated with the augmented state,
the minimum invariant sets for the monitoring variable are referred to as the terminal sets.

From Equations (14) and (16a), it can be seen that the detectability of an attack (with
respect to the detection scheme in Equation (15)) is dependent on how the reachable sets
of the monitoring variable for the process under attack evolve in relation to the reach-
able sets of the monitoring variable for the process in the absence of an attack. Given an
attack and the set of initial states, the reachable sets for the attack-free and the attacked
processes may be computed offline, and attacks may be classified on the basis of their
detectability with respect to the reachable set-based detection schemes by checking for
certain conditions [14]. If at any time step t ∈ Z+, the intersection between the reachable
set for the attacked process and the reachable set for the attack-free processes is empty
(Rη

t (R
ξ
t (K, L)) ∩ Rηa

t (Rξa
t (K, L)) = ∅), then the attack is detectable. An attack is unde-
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tectable if, for all t ∈ Z+, the reachable set for the attacked process is contained within the
reachable set for the attack-free process, i.e.,Rηa

t (Rξa
t (K, L)) ⊆ Rη

t (R
ξ
t (K, L)). An attack is

potentially detectable if for all t ∈ Z+, the reachable sets for the attacked process intersect
with, but not necessarily contained within, the reachable sets for the attack-free process, i.e.,
Rηa

t (Rξa
t (K, L)) ∩Rη

t (R
ξ
t (K, L)) ̸= ∅ for all t ∈ Z+ and Rηa

t (Rξa
t (K, L)) ̸⊆ Rη

t (R
ξ
t (K, L))

for some t ∈ Z+.

3. Randomized Control Mode Switching for Detection of Cyberattacks

In this section, we present a reachable set-based detection scheme that employs ran-
domized switching between different control modes to facilitate attack detection. To
provide context for the development of the proposed scheme, we begin by reviewing our
previous work on control mode switching-enabled attack detection designed for processes
under steady-state operation. Following this, we present theoretical results that charac-
terize the interdependence between the control parameter selection, closed-loop stability
under attack, and the detectability of an attack with respect to the detection scheme in
Equation (15). We present an algorithm for a randomized control mode switching-enabled
attack detection method designed for processes during a transient operation to enable
attack detection with zero false alarms. Finally, we propose a modification to the con-
trol mode switching algorithm that enables attack detection with zero false alarms when
implemented on processes under steady-state operation.

3.1. Control Mode Switching for Cyberattack Detection

Multiplicative FDI attacks alter the stability properties of a closed-loop process by mod-
ifying the eigenvalues of the matrix Aξa(K, L) in Equation (9). As a result, the detectability
of such attacks may be influenced by the stability of the closed-loop process under an attack.
In prior works [13,15], we presented a control mode switching-enabled attack detection
method for the detection of multiplicative sensor–controller link FDI attacks. We considered
processes under steady-state operation, when the augmented state and the monitoring
variable are bounded within the minimum invariant set and the terminal set, respectively.
The switching-enabled attack detection method enabled attack detection by exploiting the
interdependence between the control parameter selection, the stability of the closed-loop
process under an attack, and the detectability of an attack with respect to the terminal
set-based detection scheme. Dynamics of the attack-free process may be excited due to
a control mode switch and may cause a brief transient operation of the process during
which the monitoring variable may not be bounded within the terminal set. The terminal
set-based detection scheme may therefore generate a false alarm during transient operation,
as it does not distinguish between anomalies in values of the monitoring variable during
an attack and during transient operation. For processes with an invertible output matrix,
we presented a condition that may be checked to schedule control mode switches at time
steps when the switch does not cause a transient operation in the attack-free process [13].
However, satisfaction of the presented condition could not be guaranteed. To enable attack
detection, a control mode switch could be implemented at a time when the condition is not
satisfied, potentially leading to a transient operation, which could trigger false alarms in
the detection scheme. Therefore, the proposed method did not eliminate false alarms.

In this work, we utilize the reachable set-based detection scheme in Equation (15)
to monitor a process during transient operation to eliminate false alarms even when the
output matrix is not invertible. From Equation (10), the reachable sets for the attacked
process are influenced by the control parameters, and by extension, the control parameters
influence attack detectability with respect to the reachable set-based detection scheme.
If the attacked closed-loop process is unstable, its reachable sets may evolve differently
from the reachable sets associated with the attack-free process, thereby influencing attack
detectability. Proposition 1 below characterizes the interdependence between the stability
of the closed-loop process under an attack and the detectability of an attack with respect to
the detection scheme in Equation (15).
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Proposition 1. Consider the attacked closed-loop process with (K, L) and a set of initial states
Rξ

0. Let an attack destabilize the process in the sense ∥ξt∥ → ∞ as t → ∞. If the matrix pair
(Aξa(K, L), Cηa) is observable, then the attack is detectable with respect to the reachable set-based
detection scheme in Equation (15).

Proof. For an attack-free closed-loop process with (K, L) and a set of initial statesRξ
0, its

t-step reachable set is a compact set. This follows from Equation (16a), and the assumptions
that the disturbances are bounded within a compact set (D) and the set of initial states (Rξ

0)
is a compact set. Let the attack cause the closed-loop process to be unstable in the sense
that ∥ξt∥ → ∞ as t → ∞. From Theorem 1 in [15], if the matrix pair (Aξa(K, L), Cηa) is
observable, then the 2-norm of the monitoring variable of the process also grows unbounded
with time, i.e., ∥ηt∥ → ∞ as t→ ∞. As a result, there exists a finite time step t′ > 0 at which
the monitoring variable is not bounded within the t′-step reachable set of the attack-free
process (ηt′ ̸∈ R

η
t′(R

ξ
t′(K, L))), and the detection scheme in Equation (12) detects the attack

at the time step t′ > 0 with an output of 1. Therefore, the attack is detectable with respect
to the reachable set-based detection scheme in Equation (15).

Proposition 1 establishes a sufficient condition for an attack to be detectable by the
reachable set-based detection scheme. To enable attack detection, it may be preferable to
operate the closed-loop process under an “attack-sensitive” mode, in which the control
parameters are chosen such that an attack destabilizes the process. However, as noted
in [13,15], prolonged operation of the process under the attack-sensitive control mode may
be undesirable because a tradeoff between attack detection and closed-loop performance
may exist. To manage the tradeoff, we consider extended operation of the process under
a “nominal” control mode, for which the control parameters (KN , LN) are chosen to meet
closed-loop performance considerations. For enabling attack detection, we consider control
mode switching to operate the process under the attack-sensitive control mode, for which
the control parameters (KA, LA) are chosen so that a range of attacks are detectable (per
Proposition 1). We choose attack-sensitive control parameters so that an attack in the range
considered causes the closed-loop process operated under the attack-sensitive control mode
to be unstable in the sense that ρ(Aξa(KA, LA)) > 1 and the matrix pair (Aξa(KA, LA), Cηa)
is observable.

Control parameters influence the reachable sets of the attack-free process (from Equa-
tion (6)). Under the switching-enabled detection method, the control parameters may vary
with the time step. Therefore, to monitor the switched system, we modify the detection
scheme in Equation (15) as follows:

ϕt(ηt) =

{
0, ηt ∈ Rη

t (R
ξ
t )

1, ηt ̸∈ Rη
t (R

ξ
t )

(18)

where Rη
t (R

ξ
t ) is the reachable set of the attack-free process that is computed per the

following recurrence relation:

Rξ
t = Aξ(Kt−1, Lt−1)Rξ

t−1 ⊕ Bd(Lt−1)D, for t > 0 (19)

where (Kt−1, Lt−1) are the gains at time t− 1, (Kt, Lt) = (KN , LN) if the control system is
operated under the nominal mode, and (Kt, Lt) = (KA, LA) if the control system is operated
under the attack-sensitive mode. The dependence of the reachable sets for the switched
system on the control parameters is dropped to simplify notation, i.e., the reachable sets for
the augmented state and the monitoring variable at any time step t ∈ Z+ is denoted simply
asRη

t (R
ξ
t ) andRξ

t . We initialize the reachable sets for the attack-free process at the set of
initial states (Rξ

t = Rξ
0 at t = 0) and assume that initially the nominal control mode is the

active mode, so that the first switch occurs from the nominal mode to the attack-sensitive
mode. For attack detection, randomly choosing the control mode switching instance (ts)
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may be preferable to scheduling the control mode switch at pre-determined time steps. This
is because randomly choosing the switching instances helps preserve the confidentiality
of the switching schedule and prevent an attacker from designing a “smart” attack that
evades detection. The reachable set-based detection scheme in Equation (18) accounts
for the evolution of the attack-free monitoring variable under each control mode and
guarantees the generation of no false alarms in the presence of any control mode switching
implemented at any randomly chosen switching instance (ts ∈ Z+). This is proven in the
following proposition, which considers multiple switches between the nominal control
mode and the attack-sensitive control mode implemented on the attack-free process at
randomly chosen time steps tsi ∈ Z+, where i ∈ {1, 2, 3, . . .} such that tsi+1 > tsi . The odd
values of i represent the time steps at which a switch from the nominal control mode to the
attack-sensitive control mode is implemented, while even values of i represent the time
steps when a switch back from the attack-sensitive mode to the nominal mode occurs.

Proposition 2. Consider the attack-free closed-loop process operated under the nominal control
mode with a set of initial statesRξ

0, which is monitored by the reachable set-based detection scheme
in Equation (18). Let multiple switches between the nominal and the attack-sensitive control modes
be implemented on the process. Let all switching instances be randomly chosen time steps tsi ∈ Z+,
where i ∈ {1, 2, 3, . . .} such that tsi+1 > tsi . The reachable set-based detection scheme generates no
alarms for all t ∈ Z+.

Proof. Consider the attack-free closed-loop process operated under the nominal control
mode with the set of initial statesRξ

0. Before a switch to the attack-sensitive control mode
occurs, the reachable set-based detection scheme in Equation (18) accounts for all values of
the attack-free process and generates no false alarms. Consider the switch to the attack-
sensitive control mode at the randomly chosen time step ts1 ∈ Z+, followed by another
switch back to the nominal control mode at the randomly chosen time step ts2 > ts1 . From
Equation (18), the reachable set-based detection scheme switches to monitoring the process
based on the attack-free reachable sets computed for the attack-free process operated under
the attack-sensitive mode, i.e., (Kt, Lt) = (KA, LA) for all t ∈ [ts1 , ts2). For the attack-free
process operated under the attack-sensitive control mode, its reachable set at each time step
after the switch contains all values of the monitoring variable (ηt ∈ Rη

t (R
ξ
t )), leading to an

output of 0 for t ∈ [ts1 , ts2). Similarly, after switching back to the nominal control mode at
time step ts2 , the reachable set-based detection scheme generates no false alarms. Similarly,
for all subsequent switches between the nominal and the attack-sensitive control modes
implemented on the process at randomly chosen time steps, it can be demonstrated that
the detection scheme in Equation (18) generates no alarms.

From Proposition 2, the reachable set-based detection scheme guarantees a zero false
alarm rate under multiple successive switches between the nominal and attack-sensitive
control modes implemented on the attack-free process. The absence of an attack on the
process is a sufficient condition to be satisfied for zero false alarms, meaning that a lack
of alarms may not be indicative of attack-free process behavior. However, it follows from
Proposition 2 that if the reachable set-based detection scheme generates an alarm at any
time step td ∈ Z+, then the alarm is only due to an attack on the process.

In general, it is not known if an attack is occurring on the process. To probe for an
ongoing attack, multiple successive control mode switches may be implemented on the
process. To facilitate the detection of a wide range of attacks, successive switches from
the nominal control mode to multiple attack-sensitive control modes may be considered.
However, the closed-loop process under the switching-enabled detection strategy is a
switched system. If not executed carefully, multiple control mode switches may destabilize
the attack-free switched closed-loop system. To avoid potential instability of the attack-free
closed-loop system, a minimum dwell time approach can be used whereby the process
is forced to remain in each control mode for a minimum period of time before switching
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to another control mode. The minimum dwell time required for closed-loop stability
can be characterized using Lyapunov techniques for switched systems [34]. Utilizing the
minimum dwell time approach to ensure the stability of the switched closed-loop system
means that each switching instance is lower bounded by the minimum dwell time of process
operation under the previous control mode. As a result, the switching instances under the
randomized switching-enabled detection strategy are random subject to a constraint on
stability.

While the dwell time for the nominal control mode (TN
c ) may be chosen to maintain

the stability of the attack-free switched closed-loop system, additional considerations may
apply to the selection of a suitable dwell time for the process when operated under the
attack-sensitive control mode (TA

c ). One consideration is management of the tradeoff
between attack detection and attack-free closed-loop performance. A longer dwell time
in the attack-sensitive mode may increase the chances of attack detection, but it could
also degrade closed-loop performance in the absence of attacks. Meeting process safety
constraints could also be another consideration in the selection of the dwell time for the
attack-sensitive mode. In the presence of an attack, the augmented state under the attack-
sensitive control mode may grow unbounded with time. However, the augmented state
may remain bounded within some safe set for a finite time of operation under the attack-
sensitive mode. It is possible that the considerations for the selection of a suitable dwell time
for operation in the attack-sensitive mode may be conflicting in some cases. For example, to
ensure that process safety constraints are met, the dwell time for the attack-sensitive mode
may be shorter than the minimum dwell time required for the stability of the attack-free
switched closed-loop system. In such cases, the dwell time for the attack-sensitive mode
should be chosen based on the process safety constraints, while the closed-loop stability
of the attack-free switched closed-loop system can be guaranteed by implementing only a
finite number of control mode switches over the infinite time interval.

Further design considerations for the switching-enabled active detection method are
the switching instances (tsi , i ∈ {1, 2, 3, . . .}), which are randomly chosen time steps at
which the control system switches from one control mode to the other. However, the
stability considerations for the attack-free process may constrain control mode switching
randomization. For switching from the nominal control mode to the attack-sensitive control
mode, the switching instances are chosen as random integers such that the process is
operated under the nominal mode for a time period that is at least equal to the dwell time
for the nominal mode TN

c . For switching from the attack-sensitive control mode to the
nominal control mode, the switching instances are chosen such that the process is operated
under the attack-sensitive control mode for the specified dwell time TA

c (chosen to meet
closed-loop stability, closed-loop performance, and process safety constraints). The first
switching instance is a random number that is greater than or equal to the dwell time of the
process operated under the nominal control mode, i.e., ts1 ≥ TN

c . All subsequent switching
instances depend on the previous switching instance and account for the dwell time of
the process under each mode. If no attack is detected, the even switching instances (for
switching from the attack-sensitive control mode to the nominal control mode) may depend
upon the prior switching instances and are chosen per the relation ts2n = ts2n−1 + TA

c for
n ≥ 1. Similarly, the switching instances for switching from the nominal mode to the
attack-sensitive mode are selected as random integers that account for the dwell time under
the nominal control mode per the relation ts2n+1 ≥ ts2n + TN

c for n ≥ 1.
Once an attack is detected, no further control mode switches are implemented in the

process. From the results and discussion presented herein, monitoring the process using
the reachable set-based detection scheme ensures that we can randomize control mode
switches (randomly choose the switching instances tsi ) to enable attack detection while
guaranteeing a zero false alarm rate. Randomization of the control mode switches may help
preserve the confidentiality of the detection scheme from an attacker engaged in espionage
and thereby prevent them from learning the switching schedule and designing a smart
attack that could evade detection. Additionally, we do not make any assumptions on the
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structure of the output matrix (Cx). Therefore, the switching-enabled detection method
present in this work may enable attack detection with a guaranteed zero false alarm rate
even when Cx is non-invertible.

Remark 1. To select the attack-sensitive control parameters, the range of attacks to be detected
may be chosen as attacks on the process operated under the nominal control mode which are
either undetectable (attacks such that Rηa

t (Rξa
t (KN , LN)) ⊆ Rη

t (R
ξ
t (K

N , LN)) for all t ∈ Z+)
or potentially detectable (attacks such that Rηa

t (Rξa
t (KN , LN)) ̸⊆ Rη

t (R
ξ
t (K

N , LN)) for some
t ∈ Z+ and Rηa

t (Rξa
t (KN , LN)) ∩Rη

t (R
ξ
t (K

N , LN)) ̸= ∅ for all t ∈ Z+ ). More details on the
selection of attack-sensitive control parameters may be found in [15].

Remark 2. The even switching instances may be selected randomly to vary the dwell time of the
process operated under the attack-sensitive mode between the minimum dwell time that allows for
the stability of the attack-free switched system (TA

c
min) and the specified dwell time chosen to meet

the closed-loop performance, attack detection, stability, and process safety constraints (TA
c ). Under

this modified method, the even switching instances may be chosen as random integers that satisfy
ts2n − ts2n−1 ∈ [TA

c
min, TA

c ] for all n ≥ 1. However, implementing control mode switching with a
time-varying dwell time for the attack-sensitive mode is subject to a rigorous characterization of the
dwell times TA

c
min and TA

c , which is outside the scope of current work.

3.2. Algorithms for the Randomized Control Mode Switching-Enabled Cyberattack
Detection Method

Algorithm 1 outlines the steps for the implementation of the randomized control
mode switching-enabled cyberattack detection method. The proposed method considers
that the reachable sets of the monitoring variable for the attack-free process are computed
online and allows for multiple switches between the nominal and the attack-sensitive
control modes to probe the process for attacks. The inputs to the algorithm are the set
of initial statesRξ

0, the nominal control parameters (KN , LN), the attack-sensitive control
parameters (KA, LA), the minimum dwell time for the attack-free process operated in the
nominal control mode TN

c , and the dwell time of the closed-loop process operated in the
attack-sensitive control mode TA

c . The detection time td is the output of the algorithm. The
randomization of the control mode switching instances is dictated by the randomization
flag f , which is a random variable that can take values of 0 or 1 and is assigned a new value
at each time step (which is the controller sampling instance). If at a given time step, f = 0,
then the current time step is not a switching instance, and if f = 1, then the current time
step is a switching instance.

Algorithm 1 may be implemented with the reachable sets computed online using
one of several methods that have been proposed in the literature (e.g., [35–37]). Online
computation of the reachable sets may not scale well with the dimension of the state,
and the computation may become intractable within the sampling instances. As a result,
implementation of Algorithm 1 on a process under transient operation may not always be
feasible.

Chemical processes are operated for extended periods at or near their steady states,
where all possible values of the process states are bounded within the minimum invariant
set. Considering this, we propose a modification to the algorithm for the implementation of
control mode switching on a closed-loop process under steady-state operation using reach-
able sets computed offline. Based on standard results from the literature (see Theorem 1
in [33]), it can be shown that after a switch between the nominal and attack-sensitive control
modes, the reachable sets of the attack-free process converge to an invariant neighborhood
of the minimum invariant set of the process under the new mode in finite time. This means
that, for the process at steady state, the values of the monitoring variable evolve within
the terminal set of the operating mode prior to a control mode switch. Following each
switching event, for the process under transient operation, its monitoring variable values
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evolve within the attack-free reachable sets under the new mode. However, the transient
operation lasts only for a finite number of time steps, until the reachable sets are contained
entirely within (i.e., converge to) an invariant neighborhood of the minimum invariant set
of the attack-free process operated under the new mode. After convergence, the process
monitoring variable values are bounded within an invariant neighborhood of the terminal
set of the attack-free process under the new mode. Based on these considerations, a hybrid
approach may be used to monitor the switched closed-loop system. In this approach,
the detection scheme switches with the control mode. The reachable set-based detection
scheme is used only during the transient period after each switch. The detection scheme
switches to a terminal set-based detection scheme after sufficient time has elapsed from the
control mode switch such that the reachable sets of the augmented state for the attack-free
process converge to an invariant neighborhood of the minimum invariant set of the process
under the new mode. Using this hybrid monitoring approach, the computational load for
computing the reachable sets during the implementation of Algorithm 1 may be reduced
by terminating the online computation of the reachable sets after the process has attained
steady-state operation (i.e., at the time step that the attack-free reachable sets converge to
an invariant neighborhood of the minimum invariant set).

Algorithm 1: Algorithm for the randomized control mode switching-enabled
attack detection with online reachable set computation.

Inputs: Rξ
0, (KN , LN), (KA, LA), TN

c , TA
c

Initialization: td = ∞, ts = ∞, t = 0, (Kt, Lt) = (KN , LN)
Outputs: td

1 do
2 Receive the measured variable yt from the sensors over the sensor–controller

communication link
3 Calculate the monitoring variable ηt and reachable set of the attack-free

processRη
t (R

ξ
t )

4 Randomization logic
5 if ts = ∞ then
6 Randomly generate switching flag : f ∈ {0, 1}
7 else if t > ts + TA

c + TN
c then

8 Set ts = ∞

9 Monitoring logic
10 Compute the detection scheme output ϕt(ηt) per Equation (18)
11 if ϕt(ηt) = 1 then
12 Declare the detection of an attack. Set the detection time step to be the

current time step t = td. Terminate the detection algorithm.
13 Switching logic
14 else if f = 1 and ts = ∞ then
15 Set f = 0, ts = t and (Kt, Lt) = (KA, LA)

16 else if t = ts + TA
c then

17 Set (Kt, Lt) = (KN , LN)

18 Set t← t + 1, (Kt+1, Lt+1) = (Kt, Lt)

19 while td = ∞;

Algorithm 2 outlines the steps for implementing the randomized switching-enabled
attack detection strategy for processes under steady-state operation that utilizes the hybrid
monitoring approach. The inputs for the algorithm are the specified dwell time of the
process operated under the nominal mode TN

c , the dwell time of the process operated under
the attack-sensitive mode TA

c , the nominal (KN , LN) and the attack-sensitive (KA, LA)
control parameters, the minimum invariant sets for the attack-free process operated under
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the nominal mode Rξ
∞(KN , LN)′ and under the attack-sensitive mode Rξ

∞(KA, LA)′, the
number of time steps that the reachable sets take to converge to the minimum invariant
set for the process operated under the attack-sensitive mode (starting from the minimum
invariant set for the process operated under the nominal mode tr), the number of time steps
the reachable sets take to converge to the nominal minimum invariant set (starting from
the attack-sensitive minimum invariant set t∗r ), and the reachable sets for a switch from the
nominal control mode to the attack-sensitive control modeRη

t (R
ξ
t (K

A, LA)) for t ∈ (0, tr]
and for a switch from the attack-sensitive control mode to the nominal control mode
Rη

t (R
ξ
t (K

N , LN)) for t ∈ (0, t∗r ]. The algorithm implementation is terminated when an
attack is detected.

Algorithm 2: Algorithm for the randomized control mode switching-enabled
attack detection for processes with offline computation of reachable sets

Inputs: Rη
∞(Rξ

∞(KN , LN)′),Rη
∞(Rξ

∞(KA, LA)′), TA
c , TN

c ,
Rη

t (R
ξ
t (K

A, LA)) for t ∈ (0, tr],Rη
t (R

ξ
t (K

N , LN)) for t ∈ (0, t∗r ]
Initialization: t = 0, td = ∞, ts = ∞,Rξ

0 = Rξ
∞(KN , LN)′, (Kt, Lt) = (KN , LN)

Outputs: td
1 do
2 Receive the measured variable yt from the sensors over the sensor-controller

communication link
3 Calculate the monitoring variable ηt
4 Randomization logic
5 if ts = ∞ then
6 Randomly generate switching flag : f ∈ {0, 1}
7 else if t > ts + TA

c + TN
c then

8 Set ts = ∞

9 Reachable sets for monitoring
10 if ts = ∞ or t > ts + t∗r then
11 Rη

t (R
ξ
t ) = R

η
∞(Rξ

∞(KN , LN)′)
12 else if t ≤ ts + tr then
13 Rη

t (R
ξ
t ) = R

η
p(Rξ

t (K
A, LA))

14 p = t + 1− (ts + tr)

15 else if t ∈ [ts + TA
c , ts + TA

c + t∗r ) then
16 Rη

t (R
ξ
t ) = R

η
p(Rξ

t (K
N , LN))

17 p = t + 1− (ts + TA
c + t∗r )

18 else if t ∈ [ts + tr, ts + TA
c ) then

19 Rη
t (R

ξ
t ) = R

η
∞(Rξ

∞(KA, LA)′)

20 Monitoring logic
21 Compute the detection scheme output ϕt(ηt) per Equation (18)
22 if ϕt(ηt) = 1 then
23 Declare the detection of an attack.Set the detection time step to be the

current time step t = td. Terminate the detection algorithm.

24 Switching logic
25 else if f = 1 and ts = ∞ then
26 Set f = 0, ts = t and (Kt, Lt) = (KA, LA)

27 else if t = ts + TA
c then

28 Set (Kt, Lt) = (KN , LN)

29 Set t← t + 1, (Kt+1, Lt+1) = (Kt, Lt)

30 while td = ∞;
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Remark 3. Per the steps in Algorithms 1 and 2, the odd switching instances, which dictate when a
switch from the nominal control mode to attack-sensitive control mode occurs, may be chosen as
an arbitrarily large positive integer. To avoid waiting for an inordinately long time period before a
control mode switch, the time step for odd switching instances may be chosen as an integer over
a finite time interval [tmin

s , tmax
s ], where tmin

s ≥ TN
c is the lower bound and tmax

s ≥ tmin
s is the

operator-specified upper bound of the interval.

Remark 4. When implementing Algorithms 1 and 2, the randomization flag ( f ) may be drawn
from a Bernoulli distribution with p ∈ [0, 1] and q = 1− p. Where p is the probability that a
random variable drawn from the distribution takes a value of 1, and q is the probability that a random
variable from the distribution takes a value of 0. If p = 0.5, the process is switched as frequently
as it is not switched. To increase the likelihood of confounding an attacker, p may be chosen as a
number that is not equal to 0.5.

4. Application of Randomized Control Mode Switching Algorithms to
Illustrative Processes

In this section, we demonstrate the application of the proposed switching-enabled
attack detection strategy with randomized control mode switching using two illustrative
examples. In the first example, we demonstrate the application of Algorithm 1 on a dynamic
process and use attack-free reachable sets computed online for monitoring the process.
In the second example, we demonstrate the application of Algorithm 2 to a chemical
process example under steady-state operation and use attack-free reachable sets computed
offline to monitor the process. Using simulations of the chemical process example, we also
demonstrate the application of the randomized control mode switching approach for the
detection of a “smart” attack that is designed to evade detection under a scheduled control
mode switch. The MPT 3.0 toolbox [38] is used to compute all polytopes [38] and the CORA
toolbox [39] is used to compute all zonotopes.

4.1. Illustrative Scalar Process

We consider an example process that has one state and one manipulated input:

xt+1 = xt + ut + wt

yt = Λy(xt + vt)

ut = Λu(−Kx̂t)

where xt ∈ R, yt ∈ R, and ut ∈ R for all t ∈ Z+ are the process state, the measured output,
and the manipulated input, respectively. The scalars, vt ∈ V := {v ∈ R | |v| ≤ 1} and
wt ∈ W := {w ∈ R | |w| ≤ 1}, model the bounded measurement noise and the process
disturbance, respectively. The process may be under a multiplicative attack that modifies
the operational data over all PCS communication links, which are represented by Λy ̸= 1
and Λu ̸= 1. To analyze the closed-loop process, we define an augmented state that is a
concatenation of the process state and the estimation error as follows: ξ := [x e]T . With this
definition, the evolution of the augmented state of the process is described by Equation (9)
with Ax = 1, Bu = 1, Cx = 1. For process monitoring, we consider a monitoring variable
that is a concatenation of the measured output and the residual vectors η := [y r]T . The
monitoring variable η may be expressed in the form of in Equation (12) with Hy = [1 1]T

and Hŷ = [0 − 1]T .
We choose the nominal controller gain KN to minimize the quadratic cost

J = E
[
Σ∞

i=0(xT
i Qxi + uT

i Rui)
]
, with Q = 5, R = 1, and the nominal observer gain as

the steady-state Kalman filter gain with covariance matrices QL = 0.0011 and RL = 0.0011.
Likewise, we choose the attack-sensitive parameters such that the attacked closed-loop pro-
cess operated under the attack-sensitive mode is unstable in the sense that ρ(Aξa(KA, LA)) >
1 over the attack range Λy = 0.86 and Λu ∈ [1.1, 2], and Λu = 1.1 and Λy ∈ [0.1, 0.99]. The
matrix pair (Aξa(KA, LA), Cηa) is observable over the attack range considered for selecting
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the attack-sensitive parameters. The values of the nominal and attack-sensitive control
parameters are (KN , LN) = (0.8541, 0.618) and (KA, LA) = (1.57, 1.28). For the attack-free
process, we compute invariant outer ϵ-approximations of the minimum invariant set for
the process under the nominal and the attack-sensitive modes with an error bound of
ϵ = 5× 10−5 using the method described in [32]. For brevity, in the remainder of this
paper, we refer to the invariant outer ϵ-approximation of the minimum invariant set as
the minimum invariant set. For the attack-free process with the control system under the
nominal mode, its reachable sets take 18 time steps to converge from the set of initial states
to the minimum invariant set. Similarly, for the attack-free process operated exclusively
under the attack-sensitive mode, the reachable sets of the augmented state from the set of
initial states converge to the minimum invariant set in five time steps.

We consider the process under a transient operation when its state evolves from a set
of initial states, that is, the polytope obtained by shifting all the vertices of the minimum
invariant set of the attack-free process operated under the nominal mode by ξ ′ = [−10 0]T .
To quantify the performance of the controller for the attack-free process operated under
the attack-sensitive mode and the nominal mode, we perform two sets of simulations
(each set consisting of 1000 simulations) of the attack-free process. In the first set, we
consider the exclusive operation of the attack-free process under the nominal mode. In
the second set, we consider the exclusive operation of the attack-free process under the
attack-sensitive mode. Within a simulation set, at each time step of each simulation, we
vary the values of the process disturbance and the measurement noise, which we model
as random variables drawn from two separate normal distributions with N (0, 0.0333).
However, across simulation sets, we use the same values of process disturbance and
measurement noise. Within each simulation, we consider the evolution of the process for
1000 time steps, and we initialize the state at ξ0 = [−10 0]T . We compare the quadratic
cost (J = E

[
Σ1000

i=0 (xT
i Qxi + uT

i Rui)
]
) across the simulation sets. Over the simulations of

the process operated under the nominal mode, the average quadratic cost was found to
be 648.66 with a standard deviation of 37.59. Similarly, over simulations of the process
operated under the attack-sensitive mode, the average quadratic cost was found to be
1189.68 with a standard deviation of 156.77. Comparing the performance of the controller
between the two modes, it can be concluded that the controller performance is worse
under the attack-sensitive mode. This result demonstrates that to manage the tradeoff
between attack detection and the attack-free performance degradation resulting from
control mode switching, intermittent switching from the nominal control mode to the
attack-sensitive control mode may be preferred to operation under the attack-sensitive
control mode exclusively.

We now apply the switching-enabled detection method (Algorithm 1) over simulations
of the process during the transient operation for the detection of an attack with Λy = 0.86
and Λu = 1.1. First, we analyze the detectability of the attack when the process is operated
under the nominal control mode by comparing the reachable sets associated with the
attack-free process to those associated with the attacked process. Figure 1a illustrates the
reachable sets for the process operated under the nominal mode over a few time steps
during transient operation. As illustrated, at time steps t = 0, 2, 13, the reachable sets for
the attacked and the attack-free process always intersect; however, the attacked reachable
sets are not contained within the attack-free reachable sets, meaning that the attack is
potentially detectable. The transient operation of the attacked process lasts over 12 time
steps over the time interval t ∈ [0, 13). Over all time steps during transient operation of the
process, the attack is found to be potentially detectable because the reachable sets satisfy
Rηa

t (Rξa
t (KN , LN)) ∩ Rη

t (R
ξ
t (K

N , LN)) ̸= ∅ and Rηa
t (Rξa

t (KN , LN)) ̸⊆ Rη
t (R

ξ
t (K

N , LN)).
At time step t = 13, the reachable sets of the attacked process converge to the terminal
set of the attacked process. Therefore, to analyze attack detectability over the time steps
t ∈ (13, 18], the terminal set of the process under attack is compared with the reachable sets
of the attack-free process, and the attack is found to be undetectable. Figure 1b illustrates
the terminal set of the attack-free process and the terminal set of the attacked process,
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showing that the attack on the process under steady-state operation is undetectable due
to the fact that the terminal set of the attacked process is contained entirely within the
terminal set of the attack-free process, i.e., Rηa

t (Rξa
t (KN , LN)) ⊂ Rη

t (R
ξ
t (K

N , LN)). To
verify attack detectability analysis, we consider 1000 simulations of the attacked process
operated exclusively under the nominal mode and monitored by the reachable set-based
detection scheme in Equation (15). We initialize each simulation at ξ0 = [−10 0]T and
consider the evolution of the process states over 1000 time steps. Over all simulations, we
vary the values of the process disturbances and measurement noise similar to the previous
simulation sets. Over all simulations considering the process under an attack, the attack is
not detected.

(a) (b)
Figure 1. The reachable sets of the attacked and the attack-free process operated under the nominal
mode (a) during transient operation when the attack is potentially detectable, and (b) at the steady
state when the attack is undetectable withRηa

∞ (Rξa
∞(KN , LN)′) ⊂ Rη

∞(Rξ
∞(KN , LN)′).

We apply the switching-enabled active detection method over simulations of the tran-
sient closed-loop process, and for monitoring, we use the reachable set-based detection
scheme in Equation (15). We design two sets of simulations (each consisting of 1000 simu-
lations of the process) similar to the simulations considered earlier when comparing the
quadratic cost under the nominal and attack-sensitive modes. In the first simulation set,
we consider the attack-free process, while in the second simulation set, we consider the
attacked process with the attack beginning at time step t = 0. In this section, detection of
an attack on the process during transient operation is considered. Over each simulation,
the switching-enabled attack detection method implements a single control mode switch at
a randomly chosen time instance in the interval [0, 17] when the attack-free process states
under the nominal control mode are not within the minimum invariant set for the process
operated under the nominal mode. Since the simulations consider a single switch between
the two modes, we do not specify a minimum dwell time for each mode. Similarly, over sim-
ulations that consider the process operated under the attack-sensitive control mode, we use
a dwell time of TA

c = 150. Across simulations of the attack-free and the attacked processes,
we consider the same switching instance. To implement the detection scheme, we compute
the attack-free reachable sets online at each time step by using Equation (14) with (K, L)
selected based on the process operation mode (under the nominal mode (K, L) = (KN , LN),
while under the attack-sensitive mode (K, L) = (KA, LA)). However, to reduce the compu-
tational load, the online computation of the reachable sets is terminated at the time step
when the attack-free augmented state is expected to be contained within the minimum
invariant set for the process operated under the mode of operation considered. After
termination of online computation of the reachable sets, the terminal set of the monitoring
variable for the attack-free process under the mode of operation considered is used to
monitor the process.
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Over the 1000 simulations that consider the attack-free process, a switch from the
nominal to the attack-sensitive control mode is implemented at time steps chosen randomly
over the time interval [0, 17]. No attack detection occurs over all simulations after the
first switch from the nominal control mode to the attack-sensitive control mode, and the
control mode switches back to the attack-sensitive mode after 150 time steps from the first
switch. No false alarms were observed over all simulations. Under the second simulation
set, detection of the attack occurs over all simulations within a minimum of 5 time steps
and a maximum of 135 time steps from the control mode switch. Over all simulations, the
control system switches back to the nominal control mode, after which the attack is not
detected. Figure 2a,b show the values of the monitoring variable over a few time steps
of one simulation considering the attack-free process, and one simulation considering the
attacked process, respectively. Over both simulations, the control parameters switch from
the nominal to attack-sensitive values at time step ts1 = 14.

Figure 2a shows the values of the monitoring variable values observed when the
switch is implemented over a simulation considering the attack-free process. At time step
t = 0, no false alarm is generated as the value of the monitoring variable at that time step
represented by the blue diamond marker is contained within the attack-free reachable set
at that time step, which is the set shown in green. Similarly, no false alarm is observed at
time step t = 1 because the monitoring variable value represented as the blue diamond is
contained within the attack-free reachable set at that time shown as the set in white. While
omitted for clarity, no false alarms are observed until the control mode switch at ts1 = 14
because the monitoring variable values at each time step evolve within the corresponding
attack-free reachable sets. After the switch is implemented, the process is operated under
the attack-sensitive mode for 150 time steps, during which no false alarms are observed. At
time step ts1 + TA

c = 164, an attack is not detected, causing the control system to switch
back to the nominal mode. No false alarms are observed even after this switch until the end
simulation, at time step t = 1000, when the monitoring variable value represented by the
blue star marker is contained within the attack-free terminal set shown as the set in purple.

Figure 2b shows the values of the monitoring variable over a few time steps of a
simulation considering the process under the attack. At time step t = 0, the attack on the
process under the nominal mode is not detected because the monitoring variable value
represented by the blue triangle marker is contained within the attack-free reachable set at
that time step, shown as the green set. While omitted for clarity, the attack is not detected
during the process operation under the nominal mode because the monitoring variable
values over the time interval t ∈ [0, 14) are contained within the corresponding attack-free
reachable sets. After a switch from the nominal control mode to the attack-sensitive control
mode, the attack is detected the time step td = 124 because the monitoring variable value
represented by the red star marker leaves the attack-free reachable set (which is the terminal
set of the process operated under the attack-sensitive control mode) at that time step shown
as the white set. In this case, attack detection occurs after the reachable sets of the attack-free
process converge to its terminal set under the attack-sensitive mode. After the attack is
detected, the control systems switches back to the nominal control mode and no further
alarms are observed because the monitoring variable values at each time step are contained
within the corresponding attack-free reachable sets until the end of simulation when the
attack-free reachable sets have converged to the terminal set of the attack-free process
under the nominal control mode. The monitoring variable value at time step t = 1000
(end of the simulation) is represented by the blue diamond marker, and as shown, no
alarm is observed at this time step because the monitoring variable is contained within
the attack-free terminal set shown as the set in purple. These results demonstrate that
the switching-enabled attack detection method utilizing the reachable set-based detection
scheme enables attack detection on a dynamic process while guaranteeing a zero false
alarm rate due to a control mode switch implemented at a randomly chosen time step.
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(a) (b)
Figure 2. Evolution of values of the monitoring variable, with respect to the attack-free reachable sets,
over a few time steps of a simulation of the scalar process with a control mode switch implemented
at time step ts1 = 14 for the case when (a) no attack takes place (demonstrating zero false alarms),
and (b) an attack takes place at t = 0 and is detected at time step td = 124.

4.2. A Continuous Stirred Tank Reactor

We consider an example process that consists of a continuous stirred tank reactor
(CSTR) with a second-order exothermic reaction of the form A→ B. The process dynamics
are modeled by the following system of ordinary differential equations:

dCA
dt

=
F
V
(CA0 + ∆CA0 − CA)− k0e

−E
RT C2

A

dT
dt

=
F
V
(T0 + ∆T0 − T)− ∆Hk0

ρCp
e
−E
RT C2

A +
Q

ρCpV

(21)

where CA0 and T0 are the inlet reactant concentration and feed temperature, respectively,
and CA and T are the reactant concentration and reactor temperature, respectively. The
rate of heat transfer to or from the reactor Q is chosen as the manipulated input. The
process is subject to bounded disturbances modeled as variations in the inlet reactant
concentration ∆CA0 and variations in the feed temperature ∆T0. The bounded process
disturbances are within the limits |∆CA0| ≤ 0.015 kmol m−3 and |∆T0| ≤ 4.5 K. The
measured variable available to the controller is the reactor temperature T. The bounded
noise in the measurements from the sensor is within limits such that |v| ≤ 4.5 K. Table 1
1 provides a list of the definitions and values of the process parameters. Because the
measurement of all possible states of the reactor are not available to the controller, the
illustrative example presented in this section considers a case where the output matrix C is
non-square and non-invertible.

To obtain a model similar to Equation (1), the continuous-time nonlinear process
model in Equation (21) is discretized using a sampling interval of ∆ = 1× 10−2 h. The
system matrices for the linearized CSTR process are:

Ax =

[
0.7364 −0.0041
10.6953 1.156

]
, Bu =

[
−0.0009× 10−4

0.4674

]
, Bw =

[
0.0433 −0.001
0.2724 0.054

]
The nominal observer gain is chosen as the steady-state Kalman filter gain with

covariance matrices, QK =

[
1.4062× 10−5 0

0 1.2656

]
, RK = 1.2656 and the nominal con-

troller gain is chosen to minimize the quadratic cost J = E
[
Σ∞

i=0(xT
i Qxi + uT

i Rui)
]

with

Q =

[
10 0
0 10

]
and R = 10. The attack-sensitive control parameters are chosen so that the

attacked closed-loop process under the attack-sensitive mode is unstable under a range of
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attacks by checking if ρ(Aξa(KA, LA)) > 1 over the attack range Λy = 1.1, Λu ∈ [1.3, 2], and
Λu = 1.3, Λy ∈ [1.1, 2]. Over the attack range considered, the matrix pair (Aξa(KA, LA), Cηa)
is observable, indicating that all attacks in the range considered are potentially detectable.

Table 1. CSTR process parameters.

Flow rate (F) 5.0 m3 h−1

Reactor volume (V) 1.0 m3

Feed concentration of A (CA0) 4.0 kmol m−3

Activation energy (E) 5.0× 104 kJ kmol−1

Pre-exponential factor (k0) 8.46× 106 m3 h−1 kmol−1

Gas constant (R) 8.314 kJ kmol−1 K
Feed temperature (T0) 300 K
Density of reaction mass in the reactor (ρ) 1000 kg m−3

Heat of reaction (∆H) −1.15× 104 kJ kmol−1

Heat capacity (Cp) 0.231 kJ kg K−1

Heat rate added/removed from the CSTR at
the steady state (Qs) 0 kJ h−1

Steady-state reactant concentration (CAs) 1.22 kmol m3

Steady-state temperature (Ts) 438.2 K

In this section, we apply the switching-enabled detection method on the CSTR process
under steady-state operation, when all values of the process states are bounded within the
minimum invariant set of the process. The disturbance set is modeled as a zonotope with
the origin as the center. To compute invariant outer ϵ-approximations of the minimum
invariant set (henceforth referred to as the minimum invariant set for brevity) of the
attack-free process under the nominal and the attack-sensitive modes, we use the method
in [40] and use an error bound of ϵ = 5× 10−5. For a switch performed on the attack-free
process from the nominal control mode to the attack-sensitive control mode, we compute
the reachable sets with the set of initial states Rξ

0 = Rξ
∞(KN , LN)′ for tr = 11 time steps

when the sets are contained entirely within the minimum invariant set of the attack-free
process under the attack-sensitive mode. Similarly, for a switch from the attack-sensitive
control mode to the nominal control mode, we compute the reachable sets for the attack-
free process with the set of initial states Rξ

0 = Rξ
∞(KA, LA)′ until they converge to the

minimum invariant set under the nominal control mode after t∗r = 150 time steps. We
use the monitoring variable vector η = [y r]T and compute its terminal set under each
control mode and the reachable sets after each control mode switch until they are contained
entirely within the terminal set under the new mode.

Initially, we perform two simulation sets to compare the quadratic cost
(J = E

[
Σ1500

i=0 (xT
i Qxi + uT

i Rui)
]
) for operating the process exclusively under the nominal

mode with the cost of operation of the system exclusively under the attack-sensitive mode.
The first set of simulations consider the attack-free process operated exclusively under the
nominal mode, while the second set of simulations considers the exclusive operation of the
attack-free process under the attack-sensitive mode. Under each set, 1000 simulations con-
sidering the process operating under attack-free conditions are conducted. Each simulation
considers the evolution of the process over 1500 time steps spanning 15 h in real time. We
model the process disturbances on the feed concentration as random variables drawn from
a distribution with N (0, 0.005), and we model the process disturbance and measurement
noise on the feed temperature and the temperature of the reactor (the measured output)
as random variables picked from two distinct normal distributions with N (0, 1.5). Over
each time step of each simulation, we vary the values of the random variables representing
the process distribution and the measurement noise. However, we use the same values of
random numbers across simulation sets. The disturbances are clipped at the absolute value
of their bound to ensure that there are no false alarms (e.g., if the absolute value random
number representing ∆CA0 exceeds 0.015, it is set to 0.015). Each simulation is initialized
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at the origin, which is contained within the minimum invariant sets of the process under
the attack-sensitive and the nominal modes. Over all simulations, considering the process
operated under the nominal mode, the quadratic cost has a mean of 1.016× 104 and a
standard deviation of 2.498× 103. However, for the process operated exclusively under
the attack-sensitive mode, the quadratic cost has a mean of 1.1985× 1015 and a standard
deviation of 6.2674× 1013. Therefore, the performance of the controller under the attack-
sensitive mode is higher than under the nominal mode, indicating that switching may be
preferable to extended process operation under the attack-sensitive control mode.

Next, we perform two simulation sets of the process monitored by the reachable
set-based detection scheme in Equation (15). In the first set, we implement Algorithm 2
over simulations considering the process without an attack to show that there are no alarms
generated from consecutive control mode switches implemented at randomly chosen time
steps. To this end, we consider the detection of an attack with Λy = 1.1 and Λu = 1.3. The
attack beginning at time step t = 0 on the process operated only under the nominal mode
is not detected over 1000 simulations, even though it is potentially detectable. Therefore, in
the second simulation set, we implement Algorithm 2 over 1000 simulations of the attacked
process (attack begins at t = 0). Over simulations considering the process operated
under the attack-sensitive mode, we restrict the dwell time under attack-sensitive mode
to TA

c = 150. Over each simulation, the switching instances are chosen randomly such
that a maximum of three switches from the nominal to the attack-sensitive control mode
and back from the attack-sensitive to the nominal control mode are possible over each
simulation. Specifically, the first switching instance from the nominal to the attack-sensitive
control mode (ts1) is selected as a random integer in the interval [0, 1200]. The second
switching instance from the nominal control mode (ts3) is based on the first switching
instance by selecting a random integer over the interval [ts1 + TA

c + 150, 1200]. If no attack
is detected, then we allow for a third instance of a switch from the nominal control mode
to the attack-sensitive control mode, with the switching instance ts5 chosen as a random
integer over the interval [ts3 + TA

c + 150, 1200]. We do not specify a minimum dwell time
for operation under the nominal mode since the simulations consider a finite number of
switches between the different control modes.

Over all simulations considering the attack-free process, no alarms are observed, and
a minimum of two and a maximum of three control mode switches are implemented.
Over all simulations, the process is under the nominal mode at the end of the simulation.
Figure 3a illustrates the values of the monitoring variable observed over a few time steps
of a simulation of the attack-free process over which there are three consecutive switches
from the nominal to the attack-sensitive control mode implemented at time steps ts1 = 221,
ts3 = 767, and ts5 = 1313. Over all simulations of the attack-free process, no false alarms
are observed. While omitted for clarity in Figure 3a, the monitoring variable values
before the time step ts1 evolve within the terminal set of the attack-free process under
the nominal control mode shown as the green set and no false alarms are observed until
the first switching instance ts1 = 221 when the control system switches to the attack-
sensitive control mode. No false alarms are observed during process operation under the
attack-sensitive control mode. As a result, after the dwell time under the attack-sensitive
mode elapses, the control system switches back to the nominal mode at time step ts1 + TA

c .
As shown, no false alarm is observed at ts1 + TA

c because the monitoring variable value
(indicated by the blue circle marker) is contained within the terminal set of the attack-free
process under the attack-sensitive control mode (indicated by the white set). While omitted
here for brevity, no false alarms are observed during process operation under the nominal
control mode, and a second switch to the attack-sensitive control mode occurs at time step
ts2 = 767, when the monitoring variable value (indicated by the red diamond marker) is
contained within the attack-free terminal set. Even after the second control mode switch,
no false alarms are observed and the control system switches back to the nominal control
mode after the dwell time under the attack-sensitive mode elapses at time step ts2 + TA

c ,
when the monitoring variable value (indicated by the red circle marker) is contained within
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the terminal set of the process under attack-sensitive mode. No false alarms are observed
even after a third switch from the nominal to the attack-sensitive control mode occurs at ts3

(monitoring variable value shown by purple diamond marker) followed by a switch back
from the attack-sensitive to the nominal control mode at time step ts3 + TA

c (monitoring
variable value shown by purple circle marker). The results demonstrate that the proposed
control mode switching strategy guarantees a zero false alarm rate when implemented on
the attack-free process.

(a) (b)
Figure 3. Values of the monitoring variable observed over a few time steps of a simulation considering
(a) the attack-free process with consecutive switches from the nominal control mode to the attack-
sensitive control mode implemented at ts1 = 221, ts3 = 767, and ts5 = 1313 showing no false alarms
due to switching and, (b) the process under an attack, with switching from the nominal to the
attack-sensitive control mode at time step ts1 = 221 leading to attack detection at time step td = 235.

Figure 3b illustrates the values of the monitoring variable observed over some time
steps of one simulation of the process under the attack, over which the first switching
instance is ts1 = 221. Until this control mode switch, the attack is not detected because
the monitoring variable values evolve within the terminal set of the attack-free process
under the nominal control mode. At the switching instance ts1 , the monitoring variable
value shown by the blue marker is contained within the terminal set of attack-free process
under the nominal mode (shown as the green set), meaning that no attack is detected.
After the control mode switch, no alarms are observed until the attack is detected at time
step td = 235 when the reachable sets of the attack-free process are contained entirely
within the terminal set of the attack-free process operated under the attack-sensitive control
mode. As shown in Figure 3b, at the detection time step td, the monitoring variable value
of the process shown by the red diamond marker is not contained within the terminal
set of the attack-free process operated under the attack-sensitive control mode. Over all
simulations of the process under attack, detection of the attack occurs after the first control
mode switch within a minimum of 4 time steps and a maximum of 69 time steps from the
switching instance. The results demonstrate that the reachable set-based detection scheme
in Equation (15) guarantees attack detection with a zero false alarm rate, for a randomly
chosen switching instance, even when the output matrix Cx is non-invertible.

4.2.1. Comparison of Randomized and Scheduled Control Mode Switching

In this section, we demonstrate the application of the randomized control mode
switching to enable the detection of a “smart” attack that is designed to evade detection
under a scheduled control mode switching-enabled attack detection method. We consider
a simulation of the CSTR process, over which control mode switching is implemented per
a fixed schedule as shown in Figure 4. As illustrated, the switching schedule allows for
two control mode switches between the nominal and the attack-sensitive control modes.
For switching from the nominal to the attack-sensitive control mode, the first switching
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instance is ts1 = 300 and the second switching instance is ts3 = 900. If no attack is detected
on the process operated under the attack-sensitive control mode until the dwell time of
TA

c = 150 time steps elapses, the controller switches back to the nominal mode. We assume
that an attacker who is aware of the switching schedule designs a smart attack that switches
the attack matrices in sync with the control mode switching. Specifically, the attacker uses
an attack with Λy = 1.1 and Λu = 1.3 when the process is expected to operate under the
nominal control mode. While potentially detectable, the attack on the process operated
under the nominal control mode is not detected. However, when the process is expected to
operate under the attack-sensitive control mode, the attacker switches to using an attack
with Λy = 0.9 and Λu = 1.1 under which the attacked process is stable. Similar to the
attack on the process operated under the nominal mode, the attack on the process operated
under the attack-sensitive mode is potentially detectable; however, the attack is such that it
is not detected. The attack schedule is as shown in Figure 5a,b.

Figure 4. Scheduled control mode switching for the CSTR process. A value of 0 on the Y-axis indicates
that the process is operated under the nominal control mode, and a value of 1 on the Y-axis indicates
that the process is operated under the attack-sensitive control mode.

(a) (b)
Figure 5. The smart attack schedule, which is designed to evade detection under the scheduled
control mode switching-based detection scheme. The figures illustrate the attack schedule for (a) the
sensor–controller attack and (b) the controller–actuator attack.

We consider one simulation that considers the closed-loop process under the smart
attack, with the control mode switch implemented per the schedule shown in Figure 4. The
process is initialized under the nominal control mode, with its initial state chosen as the
origin. The reachable set-based detection scheme is used to monitor the process, similar to
the previous section. The values of the process disturbances and measurement noise are
varied at each time step over this simulation. The values of the monitoring variables at
the switching instances over this simulation are illustrated in Figure 6a. The attack is not
detected over this simulation, demonstrating that an attacker with sufficient knowledge of
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the detection scheme may be able to design an attack that is capable of evading detection
under a scheduled control mode switch.

(a) (b)
Figure 6. Values of the monitoring variable for the CSTR process under attack showing (a) no
attack detection with scheduled control mode switching (b) attack detection at td = 235 under the
randomized switching scheme after a control mode switch implemented at ts1 = 221.

Next, we perform 1000 closed-loop simulations considering the process subject to the
smart attack but with randomized (rather than scheduled) control mode switching. Over
each simulation, we use the same values of the process disturbances and measurement
noise as in the first simulation with the scheduled control mode switch. However, we apply
the control mode switches at randomly chosen time steps. Over each simulation, we allow
for a maximum of three control mode switches. The first control mode switching instance
from the nominal to the attack-sensitive control mode (ts1 ) is selected as a random integer
generated over the interval [99, 249]. The second switching instance from the nominal to the
attack-sensitive control mode (ts3 ) depends on the first switching instance and is selected as
a random integer generated over the interval [ts1 + TA

c + 151, ts1 + TA
c + 451]. Finally, if an

attack is not detected over the two previous control mode switches, a third switch from the
nominal control mode to the attack-sensitive control mode is implemented at time step (ts5 )
selected as a random integer generated over the interval [ts3 + TA

c + 151, ts3 + TA
c + 451].

The third switch from the nominal to the attack-sensitive control mode is implemented
only if ts3 + TA

c + 151 < 1200 so that at the end of each simulation, the process is under the
nominal control mode.

Over all simulations considering the process under the attack and the randomized
control mode switching, the detection of the smart attack occurs after the first control
mode switch within a minimum of 4 time steps and a maximum of 40 time steps from the
switching instance. Figure 6b illustrates the attack detection over a simulation considering
the process under the smart attack with the randomized control mode switching-enabled
attack detection method. Over this simulation, the control mode switch is implemented at
time step ts1 = 221 leading to attack detection at td = 235. Because an attack is detected
after the first control mode switch, no further switches are implemented by the detection
scheme. The results demonstrate that from the perspective of enabling attack detection,
a randomized control mode switching method may be preferred to a scheduled control
mode switching method because an attacker may not be able to design a smart attack that
is capable of evading detection.
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Remark 5. Figure 4 is an illustrative example for the operation of the CSTR process under the
scheduled switching-enabled detection strategy. An operator may choose to implement a switching-
enabled detection strategy on the process that uses other periodic or non-periodic patterns for
switching between the nominal and the attack-sensitive modes. Irrespective of the pattern of
operation, an attacker with knowledge of the switching schedule may be able to design a detection-
evading smart attack. Comparison of attack detection between scheduled and randomized switching-
enabled strategies for smart attacks designed to evade detection under scheduled switching with
patterns other than the one shown in Figure 4 may require a case-by-case analysis. Nevertheless, we
anticipate that operating the CSTR process under the randomized switching-enabled strategy will
help preserve the confidentiality of the detection scheme and thus enable attack detection over more
simulations than under the scheduled switching-enabled detection strategy.

4.2.2. Application to the Nonlinear CSTR Process

We demonstrate the application of the proposed switching-enabled attack detection
method to detect a smart attack on the nonlinear sampled-data model of the CSTR process.
In all simulations considered in this section, the CSTR is modeled using its continuous-
time nonlinear process model in Equation (21), and the linear control law and the Lu-
enberger observer are applied with a zero-order hold that considers a sampling interval
of ∆ = 1× 10−2 h. To solve the differential equations modeling the CSTR, we use the
explicit Euler’s method with an integration time step of 1× 10−4 h. We model the process
disturbances and measurement noise values as random numbers drawn from a Gaussian
distribution. Specifically, we model the disturbance in the feed concentration (∆CA0) as
random variables drawn from a distribution with N (0, 0.0037) and the disturbance in
the sensor measuring the temperature of the feed to the reactor and the measurement
noise in the sensor measuring the temperature of the reactor as random variables drawn
from two distinct distributions with N (0, 1.125). The disturbances are drawn from normal
distributions with a smaller standard deviation than those used over the simulations in
the Section 4.2.1. This is performed to ensure the validity of the reachable and terminal
sets computed using the linear process model and enable process monitoring using the
detection scheme in Equation (15).

Similar to the previous section, we first simulate the closed-loop process under a
smart attack (Figure 5a,b) with a scheduled control switching-enabled attack detection
method as in Figure 4. Over this simulation, the closed-loop system is initialized at the
origin, and the process disturbances and measurement noise are varied at each sampling
instance. As illustrated in Figure 7a, based on the values of the monitoring variables
at the switching instances, it can be seen that the smart attack is not detected with the
scheduled control mode switching approach. We then perform 1000 simulations of the
attacked process with the same process disturbance and measurement noise considered
in the simulation with the scheduled switch. Over each simulation, a randomized control
mode switching is implemented, where the switching instances are the same as over the
corresponding simulations for the linear CSTR process model in Section 4.2.1. Over all
simulations, detection of the attack occurs within a minimum of 5 time steps (0.05 h in
real time) and a maximum of 44 time steps (0.44 h in real time) from the first switching
instance. Figure 7b illustrates the evolution of the monitoring variable over a few time
steps of the process under the smart attack, with the control mode switch implemented
randomly. Over this simulation, attack detection occurs at time step td = 231 (2.31 h in real
time), which is 10 time steps after the first switch from the nominal control mode to the
attack-sensitive control mode is implemented at time step ts1 = 221 (2.21 h in real time).
The reachable set for the attack-free process at the detection time step is contained entirely
within the terminal set. The result highlights that, for this simulation, monitoring of the
process using a reachable set-based detection scheme may be preferable to monitoring of
the process using the terminal set-based detection scheme to aid in the detection of the
attack at the earliest time step possible. Following the detection of the attack, the process
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is switched back to the nominal control mode and no further alarms are observed in the
detection scheme.

(a) (b)
Figure 7. The values of the monitoring variable for the nonlinear CSTR under a smart attack showing
(a) no attack detection with a scheduled control mode switch and (b) attack detection at time step
td = 231 (2.31 h in real time) under the randomized switching scheme after a control mode switch at
time step ts1 = 221 (2.21 h in real time).

5. Conclusions

In this work, we presented a cyberattack detection method that utilizes randomized
control mode switching to enable the detection of an attack on processes during transient
operation. The proposed detection method guarantees no alarms in the detection scheme
for the attack-free process with the control mode switching. In developing the detection
method, we exploited the interdependence between the control parameters, closed-loop
stability of the attacked process, and the ability of a reachable set-based detection scheme
to detect the attack. As chemical processes are under prolonged operation at or near
their steady states, we proposed a modification of the detection method for application to
processes operating under steady-state conditions. Using two illustrative examples, we
demonstrated the application of the control mode switching for attack detection with zero
false alarms. In the first example, we considered a scalar process under transient operation,
while in the second example, we considered a chemical process under steady-state oper-
ation. Finally, using simulations of the chemical process example, we demonstrated that
a randomized control mode switch may prevent an attacker from learning the switching
schedule, thereby preventing them from designing a smart attack that evades detection.
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36. Savković, B. Low complexity parameterized approximations of reachable sets for LTI systems. In Proceedings of the 2009
IEEE International Conference on Control and Automation, Christchurch, New Zealand, 9–11 December 2009; pp. 960–965.
https://doi.org/10.1109/ICCA.2009.5410182.

37. Girard, A.; Le, G.C.; Maler, O. Efficient computation of reachable sets of linear time-invariant systems with inputs. In Proceedings
of the 9th International Workshop on Hybrid Systems: Computation and Control, Santa Barbara, CA, USA, 29–31 March 2006;
pp. 257–271. https://doi.org/10.1007/11730637_21.

38. Herceg, M.; Kvasnica, M.; Jones, C.N.; Morari, M. Multi-Parametric Toolbox 3.0. In Proceedings of the European Control
Conference, Zürich, Switzerland, 17–19 July 2013; pp. 502–510. Available online: http://control.ee.ethz.ch/~mpt (accessed on 20
January 2024).

39. Althoff, M. An introduction to CORA 2015. ARCH@ CPSweek 2015, 34, 120–151.
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