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Abstract: Natural language processing (NLP) technology has recently used to predict substance
properties based on their Simplified Molecular-Input Line-Entry System (SMILES). We aimed to
develop a model predicting human skin sensitizers by integrating text features derived from SMILES
with in vitro test outcomes. The dataset on SMILES, physicochemical properties, in vitro tests (DPRA,
KeratinoSensTM, h-CLAT, and SENS-IS assays), and human potency categories for 122 substances
sourced from the Cosmetics Europe database. The ChemBERTa model was employed to analyze
the SMILES of substances. The last hidden layer embedding of ChemBERTa was tested with other
features. Given the modest dataset size, we trained five XGBoost models using subsets of the training
data, and subsequently employed bagging to create the final model. Notably, the features computed
from SMILES played a pivotal role in the model for distinguishing sensitizers and non-sensitizers.
The final model demonstrated a classification accuracy of 80% and an AUC-ROC of 0.82, effectively
discriminating sensitizers from non-sensitizers. Furthermore, the model exhibited an accuracy of 82%
and an AUC-ROC of 0.82 in classifying strong and weak sensitizers. In summary, we demonstrated
that the integration of NLP of SMILES with in vitro test results can enhance the prediction of health
hazard associated with chemicals.

Keywords: skin sensitizer; natural language processing; QSAR; SENS-IS; direct peptide reactivity
assay (DPRA)

1. Introduction

Skin sensitizers are chemicals capable of inducing skin hypersensitivity [1], a condition
that can progress to allergic contact dermatitis [2]. Consequently, the identification and
regulation of skin sensitizers are imperative in compliance with chemicals and cosmetics
regulations [3]. Traditional methods, such as the murine local lymph node assay (LLNA),
have been employed for the identification of skin sensitizers [4]. LLNA determines the
extent of lymph node cell proliferation induced by a test chemical, classifying the potency
of skin sensitizers as strong or weak based on EC3.0 (Effective Concentration 2). EC3.0
represents the concentration of a test chemical inducing a threefold increase in lymph node
cell proliferation.

While LLNA demonstrates a high hazard identification accuracy of 82.1% (46/56) for
predicting human skin sensitizers, its potency prediction is comparatively less reliable,
with an accuracy of approximately 59.6% (28/47) [5]. Moreover, the growing awareness
of animal welfare has spurred the quest for alternative methods to LLNA. Numerous in
silico and in vitro test methods have emerged for predicting skin sensitizers [6–8]. Among
these, quantitative structure–activity relationship (QSAR) models, primarily reliant on
physicochemical properties and molecular descriptors of a test chemical, have exhibited
promising outcomes. Notably, the recently introduced Skin Doctor CP utilizes molecular
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descriptors calculated with RDKit and achieves an accuracy ranging from 75% to 89% in
classifying sensitizers and non-sensitizers when compared to LLNA results [1].

Interestingly, chemicals can be represented as two-dimensional graphs, and the graph
convolutional network (GCN) model can extract additional features from the graph struc-
tures [7]. Jeon et al. have pioneered the development of a graph-based ensemble machine
learning model for skin sensitizers. This innovative model demonstrated an 88% accu-
racy (22/25) in hazard identification (sensitizers vs. non-sensitizers) using the feature set
of GCN, KeratinoSens™, and h-CLAT. Furthermore, the potency prediction model for
distinguishing strong sensitizers, weak sensitizers, or non-sensitizers exhibited a notable
64% accuracy (16/25) with the inclusion of GCN, DPRA, KeratinoSens™, and h-CLAT,
surpassing the accuracy of LLNA at 59.6% (28/47). Recently, natural language processing
(NLP) technology has garnered increasing attention. This remarkable progress is driven
by models like Bidirectional Encoder Representations from Transformers (BERT) and Gen-
erative Pre-trained Transformer 4 (GPT-4), the foundational model for ChatGPT [9,10].
NLP technology enables computers to understand and generate text in ways that were
previously unimaginable, making human–computer interactions more natural and effec-
tive. By applying NLP techniques to grasp and interpret chemical structures presented in
Simplified Molecular-Input Line-Entry System (SMILES) notation, chemical informatics has
undergone a revolutionary transformation across various domains, encompassing chemical
design, property prediction, and gaining insights into chemical reactions [11]. Innovative
models like ChemBERTa, MolBERT, and SMILES-BERT have emerged as powerful tools
in this endeavor [12–14]. In this study, we aimed to develop a model predicting human
skin sensitizers by integrating text features derived from SMILES using NLP with in vitro
test outcomes.

2. Materials and Methods
2.1. Data Collection

The Cosmetics Europe database was used to develop a machine learning model for
skin sensitization prediction. This database encompasses 6 physicochemical properties
(molecular weight, octanol-water partition coefficient (LogP), water solubility (LogS),
boiling point (BP), melting point (MP), vapor pressure (LogVP), bioconcentration factor
(LogBCF)) and the outcomes of five in vitro tests (DPRA, KeratinoSensTM, h-CLAT, U-
SENSTM, and SENS-IS) for 128 different substances [15].

A total of 1444 descriptors were further collected using PaDEL-descriptor [16]. Ad-
ditionally, 22 physicochemical descriptors, previously incorporated in our skin irrita-
tion model [17], were sourced from the ChemTunes™·ToxGPS (https://mn-am.com/
products/chemtunestoxgps/ (accessed on 3 January 2024)): HAccO, HAccN, HDon,
HDonO, HDonN, Ro5Viol, Stereo, Complex, ComplexRing, TPSA, Dipole, Polariz, LogS,
Aspheric, Eccentric, InertiaX, InertiaY, Rgyr, HoF:AM1:Cor3D:ori1, Homo:AM1:Cor3D:ori1,
Lumo:AM1:Cor3D:ori1, and HomoLumoGap:AM1:Cor3D:ori1. The set of 22 physico-
chemical descriptors includes quantum-mechanical descriptors, which are known to better
explain biological activity.

In the Cosmetics Europe database, substances were represented in the Daylight
SMILES format. However, for compatibility with the ChemBERTa model used in this
study, SMILES notations were collected from PubChem database (https://pubchem.ncbi.
nlm.nih.gov/ (accessed on 3 January 2024)). Six substances, which are natural extracts
without available SMILES notations, were excluded from this study.

The database included results of human potency categories from two previous stud-
ies [18,19]. The evidence consisted of data from human maximization tests, human repeat
insult patch tests, and diagnostic patch tests. Skin sensitization in humans has been cate-
gorized into six potency categories, with categories 5 and 6 representing non-sensitizers,
while categories 1 through 4 correspond to sensitizers ranging from extreme to weak [15].

https://mn-am.com/products/chemtunestoxgps/
https://mn-am.com/products/chemtunestoxgps/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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2.2. Variables and Data Processing

In the examination of physicochemical properties, a comprehensive total of 1472 vari-
ables were taken into account, encompassing 1444 from PaDEL, 22 from ChemTunes™,
and an additional 6 from the Cosmetics Europe database. To streamline the dataset, vari-
ables demonstrating a Pearson correlation coefficient of 0.75 or higher were systematically
excluded, with the exception of a representative one. This refinement process resulted
in a final set of 74 retained variables. Subsequently, standardized feature scaling was
implemented on these variables, ensuring a mean of 0 and a variance of 1 for enhanced
consistency in the analytical process.

DRPA determines the reactivity of a test substance with synthetic peptides containing
cysteine (C) and lysine (K), as a means of assessing its potential to haptenize peptides
in vivo [15,20]. The results were presented as data for relative C- and K-peptide depletion,
along with binary interpretation according to the OECD test guidelines 442C [15]. In
this study, an evaluation was conducted for both continuous variables (C- and K-peptide
depletion) and binary interpretation. Ultimately, the percentages of C- and K-peptide
depletion were utilized as variables, in continuous form, as they demonstrated better
model performance compared to inputting the data in binary format.

KeratinoSensTM assesses the activation of the Keap1-Nrf2-ARE pathway by a test
substance in an adherent cell line derived from human keratinocytes stably transfected
with a luciferase gene [21]. In this study, both the luciferase induction data of EC1.5, which
represents the interpolated concentration inducing a 1.5-fold response compared to the
vehicle control, and the binary interpretation according to the OECD test guideline 442D
were used. In cases where the value of EC1.5 exceeded 2000, it was substituted with
2000 due to the difficulty in obtaining precise measurements. Finally, EC1.5 data were
adopted as continuous variables, manifesting superior model performance in contrast to
employing binary-formatted data.

h-CLAT assesses the ability of a substance to activate and mobilize dendritic cells in
the skin by measuring the induction of the CD86 and CD54 cell surface markers [22]. The
binary interpretation in accordance with the OECD test guideline 442E was used in the
model development.

SENS-IS uses quality-controlled reconstituted human epidermis and predicts skin
sensitization potency using the relative expression of SENS-IS and Redox genes [23]. The
substances were classified into extreme, strong, moderate, weak sensitizers, and negatives.
In this study, sensitizers from extreme to weak were grouped as ‘positive’ for binary
classification.

The U-SENSTM data were not used in the study due to their absence for 17 substances
(14%). Some in vitro tests had missing values, and data with missing values were removed
during the model development.

The SMILES representations of substances were analyzed using a pretrained Chem-
BERTa model [14]. The ChemBERTa model is built upon the RoBERTa transformer archi-
tecture with 12 attention heads and 6 layers, having been initially trained on a dataset
encompassing 10 million PubChem entries [14]. The SMILES text was subjected to tok-
enization, with each token then converted into a unique integer by the tokenizer. The
resulting sequence of token IDs, presented as a list, served as input for the ChemBERTa
model. An embedding layer was employed to map each token to a 768-dimensional vector.
The encoder of the model consists of 6 RoBERTa layers, each equipped with a self-attention
module applied to the input, generating a 768-dimensional output vector. To introduce
regularization, a dropout with a probability of 0.1 was applied. The feature utilized for
machine learning was derived by calculating the average of the 768 embeddings from the
last hidden layer. This feature underwent standardized feature scaling as a further step in
the analytical process.

The dataset underwent partitioning into training and testing sets at an 8:2 ratio, com-
prising 97 compounds in the training set and 25 compounds in the testing set. To address
the imbalance observed in the human potency category within the data, a proportional



Toxics 2024, 12, 153 4 of 12

adjustment was made to ensure the equal representation of category proportions between
the training and testing sets.

2.3. Model Structure

Figure 1 illustrates the model framework. Given the relatively modest size of the
dataset, this study utilized the bagging-XGBoost algorithm [24]. Through random sampling
with replacement, five subsets were generated from the training set, with each subset
encompassing 80% of the data.
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Figure 1. Framework of the model.

The training process involved employing the Extreme Gradient Boosting (XGBoost)
model on each of these subsets. During the XGBoost training phase, the optimization of
hyperparameters in Table 1 was executed using 5-fold cross-validation and grid search.
Given the imbalanced nature of the data, each XGBoost model underwent training with
the objective of maximizing balanced accuracy. Furthermore, the introduction of the
scale_pos_weight hyperparameter aimed to tackle data imbalance. Evaluation occurred
under two conditions: without any weighting applied (scale_pos_weight = 1) and with
scale_pos_weight (adjusted for class ratios) set to either 0.5 or 2.0.

Table 1. List of hyperparameter values.

Hyperparameters Sensitizer vs. Non-Sensitizer Strong vs. Weak Sensitizer

learning_rate 0.01, 0.1, 0.2
n-estimators 50, 100, 200, 300, 500
max_depth 3, 5, 7, 9
subsample 0.6, 0.8, 1.0

scale_pos_weight 0.5, 1.0 1.0, 2.0

The XGBoost models, trained on 5 subsets, were amalgamated using a majority
voting approach. This involves aggregating the predictions from individual models and
determining the final prediction by selecting the class that receives the majority of votes.
Incorporating this bagging method aids in mitigating output variance and augmenting the
algorithm’s generalization ability.
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2.4. Modeling Strategy

In this study, substances were classified into two stages (Figure 2). First, substances
were categorized as sensitizer (potency categories 1 through 4) or non-sensitizer (potency
categories 5 and 6). Subsequently, sensitizers were further classified into strong (1A; potency
categories 1 and 2) or weak sensitizer (1B; potency categories 3 and 4).
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The selection of variables for inclusion in the model was based on the average feature
importance derived from five XGBoost models. Feature importance indicates the contribu-
tion of each feature to the model by measuring the reduction in loss when a specific feature
is utilized for splitting. The ultimate model was chosen by comparing the balanced accuracy
of models using the top 10 and top 15 features, as determined by feature importance.

Accuracy, balanced accuracy, AUC-ROC (area under the receiver operating character-
istic curve), sensitivity, specificity, and F1 score were calculated from predicted values and
actual values in the testing dataset using the following formulas [25]:

Accuracy = (TP + TN)/(TP + TN + FP + FN), (1)

Balanced accuracy = (Sensitivity + Specificity)/2, (2)

Sensitivity = TP/(TP + FN), (3)

Specificity = TN/(FP + TN), (4)

F1 score = 2 × TP/(2 × TP + FP + FN). (5)

Here, TP and TN represent true positives and negatives; FP and FN represent false
positives and negatives.

The machine learning analysis was conducted in the Google Colab environment
(https://colab.research.google.com/ (accessed on 3 January 2024)).

2.5. SHAP (SHapley Additive exPlanations)

SHAP is an explainable AI method that employs a game-theoretic approach to elu-
cidate the outcomes of machine learning [26]. SHAP values delineate the contribution of
each feature to the model’s prediction [26]. Positive SHAP values denote contributions that
elevate the model’s prediction, whereas negative values indicate contributions that lower
the prediction.

To calculate SHAP values, the testing set was input into a subset-trained XGBoost
model. Subsequently, the SHAP values obtained from five models were averaged and
visualized. The SHAP values were computed using the SHAP package within the Google
Colab environment.

https://colab.research.google.com/
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3. Results
3.1. Modeling Process

Figure S1 depicts the average feature importance of a model designed to discriminate
sensitizers from non-sensitizers. Notably, ‘K-peptide’ and ‘BCUTc-1l’ share the 15th posi-
tion, possessing identical average feature importance values. Therefore, the variables for
the top 16 include C-peptide, EC1.5, SIC5, SENS-IS_cat, h-CLAT, roberta_embedding_mean,
MDEC-11, VE1_Dt, Homo:AM1:Cor3D:ori1, MDEC-12, MLFER_S, nO, HomoLumoGap:
AM1:Cor3D:ori1, ALogp2, K-peptide, and BCUTc-1l.

Table 2 displays the balanced accuracy of the model considering all features, the top
10 features, and the top 16 features. The model utilizing 16 features outperformed the
10-feature model, and while not surpassing the model with all features, it demonstrated
an acceptable balanced accuracy. Initially, four types of in vitro tests were included. To
streamline the testing process, the least important in vitro test, h-CLAT, was substituted
with the most crucial feature among those not initially included in the model, BCUTp-1l.
As both models exhibited identical balanced accuracy at 0.8199, the model incorporating
BCUTp-1l was chosen in place of h-CLAT. Refer to Table S1 for the meanings of each feature
and Table S2 for the distribution of each feature.

Table 2. Balanced accuracy of models.

Model All Features Top 15 Features Top 10 Features

Sensitizers vs. non-sensitizers 0.8493 0.8199 * 0.7868
Strong vs. weak sensitizers 0.7000 0.7167 0.8167

* This model includes 16 features.

Figure S2 illustrates the average feature importance of a model designed to differen-
tiate between strong and weak sensitizers. The top 15 variables, in descending order of
importance, include C-peptide, C1SP3, MDEC-22, EC1.5, SIC0, RotBFrac, VE1_Dt, TSRW,
BP, K-peptide, LogP, Dipole, LogS, ALogp2, and C3SP2.

Table 2 presents the balanced accuracy of the model incorporating all features, the
top 10 features, and the top 15 features. The model incorporating 10 features achieved
the highest balanced accuracy, leading to its selection as the final model. Notably, the six
features excluding EC1.5, C-peptide, K-peptide, and VE1_Dt were not utilized in classifying
sensitizers and non-sensitizers. For detailed information on each feature, refer to Table S1,
and find the distribution of each feature in Table S3.

3.2. Model Performance

Figure 3 and Table 3 illustrate the confusion matrix and predictive performance for
the two final models, respectively. The first model designed to distinguish sensitizers from
non-sensitizers demonstrated commendable performance for the test dataset composed
of 25 substances (8 non-sensitizers and 17 sensitizers), yielding an accuracy of 0.8 and
an AUC-ROC of 0.82. Likewise, the second model designed to classify strong and weak
sensitizers achieved an accuracy of 0.82 and an AUC-ROC of 0.82 for 17 sensitizers (12 weak
sensitizers and 5 strong sensitizers) of the test dataset.

Table 3. Performance of the final models.

Final Model Accuracy AUC-ROC Sensitivity Specificity F1

Sensitizers vs. non-sensitizers 0.8000 0.8199 0.7647 0.8750 0.8387
Strong vs. weak sensitizers 0.8235 0.8167 0.8000 0.8333 0.7273
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The overall accuracy of the potency prediction of sensitizers using the combined
two-stage model was 72% (18/25; Table 4). Of the strong sensitizers, 20% (1/5) were under-
predicted as weak sensitizers, while 12.5% (1/8) of non-sensitizers were overpredicted. Of
the weak sensitizers, 33.3% (4/12) were underpredicted and 8.3% (1/8) were overpredicted.

Table 4. Potency categorization performance of the final model.

Human

Predicted NC 1B 1A
NC 7 4 0
1B 1 7 1
1A 0 1 4

72% correct classification overall

NC (N = 8) 1B (N = 12) 1A (N = 5)

Correct classification (%) 87.5% 58.3% 80%
Underpredicted (%) NA 33.3% (NC) 20% (1B)
Overpredicted (%) 12.5% (1B) 8.3% (1A) NA

NA, not applicable; NC, non-sensitizer; 1A, strong sensitizer; 1B, weak sensitizer.

3.3. SHAP Analysis

Figures 4 and S3 illustrate the SHAP summary plot for the classification of sensitizers
and non-sensitizers. On the y-axis, the feature list is arranged in descending order of
mean SHAP values, with each feature’s color corresponding to its value—red indicating
higher values and blue indicating lower values. The x-axis depicts the SHAP values,
providing insight into the magnitude and direction of influence each feature has on the
model’s output.

EC1.5 exerted the most pronounced impact on the classification between sensitizers
and non-sensitizers, with smaller values indicative of categorization as a sensitizer. In
contrast, the percentage of C- and K-peptide depletion and SENS-IS_cat had less influence
compared to EC1.5, yet higher values of these features were associated with classification
as a sensitizer.

Among the physicochemical properties, Homo:AM1:Cor3D:ori1 exhibited the highest
influence, and values surpassing the average suggested a higher likelihood of being a sensitizer.
Additionally, the mean of last hidden layer embeddings obtained from the ChemBERTa model
ranked as the seventh most influential feature for sensitization prediction. A lower value of
this feature indicated a higher likelihood of being classified as a sensitizer.
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Figures 5 and S4 demonstrate the SHAP summary plot for the classification of strong
and weak sensitizers. In this distinction, EC1.5 wielded the most substantial impact, with
lower values signifying a higher likelihood of being a strong sensitizer. Conversely, higher
values of C-peptide and K-peptide were associated with a greater likelihood of being
a strong sensitizer. Among physicochemical properties, MDEC-22 emerged as a highly
influential feature, where lower values indicated a higher likelihood of being classified as a
strong sensitizer.

Figures S5 and S6 presents the average SHAP values for all substances within the
testing set across five models. While the final predictions were derived through majority
voting from the predictions of five XGBoost models, exceptions may exist where the sum
of average SHAP values differs from the final prediction (e.g., citronellol). Despite this, it
remains feasible to examine the influence of features on the classification of each substance
as a sensitizer or non-sensitizer. For instance, in the case of the sensitizer penicillin G,
results based on EC1.5 and SENS-IS suggest proximity to a non-sensitizer. However,
employing features such as Homo:AM1:Cor3D:ori1, HomoLumoGap:AM1:Cor3D:ori1, and
embedding values facilitated an accurate classification as a sensitizer.
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4. Discussion

Here, we successfully constructed a prediction model for human skin sensitizers
utilizing the SMILES data analyzed through natural language processing (NLP) techniques.
Consequently, this model demonstrated outstanding predictive capabilities, achieving an
accuracy of 80% (20/25) in classifying sensitizers versus non-sensitizers and distinguishing
strong sensitizers from weak ones with an accuracy of 82% (14/17). The overall accuracy
for potency prediction reached 72% (18/25).

Transformer models exhibit a high degree of adaptability to transfer learning, a process
where a pre-trained model on one task or dataset can be fine-tuned on a different, often
smaller, dataset for a specific task [27]. In a previous study, ChemBERTa demonstrated
its ability to identify toxic chemicals from the ClinTox dataset and p53 stress-response
pathway activators from the Tox21 dataset, achieving AUC-ROC values of 0.733 and 0.728,
respectively [14]. The substantial number of data points in these datasets, 1478 from ClinTox
and 7831 from Tox21, proved conducive to effective fine-tuning and alignment for diverse
classification tasks. In contrast, the limited dataset comprising 122 substances from the
Cosmetics Europe database in this study (with 97 utilized in the training process) proved
insufficient for the accurate classification of skin sensitizers based solely on SMILES. To
overcome this limitation, in vitro test results and other physicochemical properties were
integrated to enhance model performance. In consolidating the SMILES analysis results for
feature integration, we adopted the approach of using the average value of embeddings
from the last hidden layer. This method effectively captures the representative features of
the chemical structures encoded by the model, contributing to improved performance in
downstream analysis.

A single in vitro test can identify human skin sensitizers with an accuracy ranging
from 73.4% to 78.6% [15]. SENS-IS showed a higher accuracy of 78.6% in identifying
human sensitizers compared to other in vitro tests [15]. Although SENS-IS has not been
fully approved yet by OECD [28], our study demonstrated the significance of SENS-IS
as an important variable in machine learning for predicting human skin sensitizers. In a
previous study, DPRA appeared to be the most predictive skin sensitization test, surpassing
KeratinoSens™, h-CLAT, and LLNA, with a balanced accuracy as high as 79%, sensitivity
and positive predictive value above 82%, and specificity and negative predictive value
above 70% [29].

To address the inherent limitations of a single in vitro test, several studies have adopted
a holistic approach by incorporating multiple in vitro tests, physicochemical properties,
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and structural information. Zhang et al. achieved an 81% accuracy in their model, em-
ploying support vector methods with physicochemical properties, DPRA, h-CLAT, and
KeratinoSens™ assay data [8]. Jeon et al. developed a graph-based ensemble machine
that exhibited an 88% accuracy for hazard identification and a 64% accuracy for potency
prediction, utilizing multiple in vitro tests and the structural graph of substances [7]. The
current OECD Guideline 497 Integrated Testing Strategy version 2 (ITSv2), employing
DPRA, h-CLAT, and the OECD Toolbox, demonstrated an accuracy of 87% (54/62) for
hazard identification and 70% (40/57) for potency prediction [5]. Our model’s performance
in hazard identification was comparable to these established models, achieving an accuracy
of 80% and a balanced accuracy of 82%. Furthermore, our model showcased an improved
accuracy of 72% (18/28) for potency prediction when contrasted with the current OECD
Guideline 497 ITSv2. Undoubtedly, conducting a direct comparison poses challenges given
the variations in the composition of testing sets across different studies. Nevertheless,
the integration of SMILES information with in vitro tests and physicochemical properties
enhances the overall performance of the model.

Typically, the dataset utilized for model development defines the applicability do-
main [30]. The 122 chemicals employed in developing and testing our model exhibit
molecular weights (MW) ranging from 30.03 to 604.82 (with 95% below 430.5), LogP values
ranging from −8.28 to 8.49 (with 95% below 6.2), and water solubility (LogS) ranging from
−2.3 to 1.2 (with 95% below 1.2). Chemicals falling outside these ranges may be predicted
with a higher likelihood of errors in our model. In the classification of sensitizers and
non-sensitizers, 80% (4/5) of the substances incorrectly classified belonged to the category
of false negatives. Unlike substances in the training set or those accurately classified in
the testing set, the majority of these substances had an EC1.5 of 2000. As EC1.5 is the
most influential feature in classifying sensitizers, a value of 2000 could potentially result in
the misclassification of substances as false negatives. Consequently, caution is advised in
interpreting substances with EC1.5 values close to 2000 when applying this model.

This study has some limitations. First, the limited amount of human data for skin sen-
sitizers posed a constraint on the fine-tuning of ChemBERTa. Secondly, this model cannot
be applied to substances that do not have PubChem standardized SMILES representations.
Third, using the average embedding of SMILES as a feature means that we cannot identify
the influence of each token, making it impossible to determine which structural elements
are involved in sensitization. Lastly, for substances beyond the range of the training set, the
predictive performance is diminished. In particular, substances with an EC1.5 of 2000 were
found to have a high likelihood of being classified as false negatives.

5. Conclusions

The integration of the NLP of SMILES with in vitro test results could make a pre-
diction model with an enhanced performance to predict human skin sensitizers. While
the outcomes of in vitro tests exerted a significant influence on classification, the infor-
mation encoded in SMILES also played a role in differentiating between sensitizers and
non-sensitizers. Nevertheless, additional research is imperative to acquire a larger dataset,
thereby refining the model and enhancing the overall performance of the model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/toxics12020153/s1, Table S1: Description of the features; Table S2.
Distribution of features included in the model (sensitizers vs. non-sensitizers); Table S3. Distribution
of features included in the model (strong vs. weak sensitizers); Figure S1: The feature importance of
a classifier distinguishing between sensitizers and non-sensitizers; Figure S2: The feature importance
of a classifier distinguishing between strong and weak sensitizers; Figure S3: The average SHAP
values for a classifier distinguishing between sensitizers and non-sensitizers; Figure S4: The average
SHAP values for a classifier distinguishing between strong and weak sensitizers; Figure S5. SHAP
force plot for test substances and predicted results (sensitizers vs. non-sensitizers); Figure S6. SHAP
force plot for test substances and predicted results (strong vs. weak sensitizers).
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