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Abstract

The transcriptional regulatory network (TRN) of E. coli consists of thousands of interactions

between regulators and DNA sequences. Regulons are typically determined either from

resource-intensive experimental measurement of functional binding sites, or inferred from

analysis of high-throughput gene expression datasets. Recently, independent component

analysis (ICA) of RNA-seq compendia has shown to be a powerful method for inferring bac-

terial regulons. However, it remains unclear to what extent regulons predicted by ICA struc-

ture have a biochemical basis in promoter sequences. Here, we address this question by

developing machine learning models that predict inferred regulon structures in E. coli based

on promoter sequence features. Models were constructed successfully (cross-validation

AUROC > = 0.8) for 85% (40/47) of ICA-inferred E. coli regulons. We found that: 1) The

presence of a high scoring regulator motif in the promoter region was sufficient to specify

regulatory activity in 40% (19/47) of the regulons, 2) Additional features, such as DNA

shape and extended motifs that can account for regulator multimeric binding, helped to

specify regulon structure for the remaining 60% of regulons (28/47); 3) investigating regu-

lons where initial machine learning models failed revealed new regulator-specific sequence

features that improved model accuracy. Finally, we found that strong regulatory binding

sequences underlie both the genes shared between ICA-inferred and experimental regulons

as well as genes in the E. coli core pan-regulon of Fur. This work demonstrates that the

structure of ICA-inferred regulons largely can be understood through the strength of regula-

tor binding sites in promoter regions, reinforcing the utility of top-down inference for regulon

discovery.

Author summary

The Transcriptional Regulatory Network (TRN) of bacteria is a gene expression control

system largely governed by transcription factors binding to promoter regions of the

genome, forming a connected network of regulons. While experimental determination of

functional transcription factor binding sites is laborious, inference of regulons from large-

scale gene expression datasets has proven to be a powerful alternative. Here, we seek to
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determine whether inferred regulons have a biochemical basis in terms of binding sites

sequences present at gene promoters. We use machine learning to build quantitative mod-

els relating binding site features to gene regulation. We find that the majority of data-

inferred regulons can be tied to binding site sequences at gene promoters, supporting the

biological reality of inferred regulons. Additionally, these inferred regulons sometimes

carried additional sequence context that is not accounted for by the transcription factor

binding motif extracted from experimental binding sites. An understanding of how regu-

lons are encoded in the genome will empower sequence analysis and synthetic biology

applications.

Introduction

Microbial gene expression is tightly controlled to maintain fitness under diverse conditions.

Understanding these regulatory mechanisms is critical for enabling the modification of gene

expression for synthetic biology applications. Among the processes through which expression

is controlled, transcription initiation stands out as a critical and highly regulated process [1].

In transcription initiation, the RNA polymerase recognizes the promoter sequence upstream

of a coding region, with the polymerase sigma factor binding to a conserved motif followed by

the formation of an open complex of the RNA polymerase and DNA sequence [1]. Transcrip-

tion factors (TFs) often bind to promoter regions at TF-specific motifs to activate or repress

transcription by altering the recruitment of the polymerase complex to the promoter. There

are currently estimated to be over 200 TFs and 7 sigma factors in E. coli, for which an increas-

ing fraction have characterized regulons [2]. This set of regulons constitutes the transcriptional

regulatory network (TRN) of E. coli, representing thousands of interactions between regulators

and promoter sequences [2]. While our understanding of the TRN of E. coli likely exceeds that

of any other organism, there is still much that we do not understand regarding how the TRN is

encoded in the genome itself [3,4].

A variety of experimental and computational approaches have contributed to our current

knowledge of the structure of the TRN of E. coli. Chromatin immunoprecipitation (ChIP) is a

bottom-up method for TRN elucidation that identifies TF binding sites across the genome by

crosslinking bound proteins to DNA and then sequencing the captured DNA segments [5].

These binding sites are measured with particular signal-to-noise (S/N) ratios, depending on

the number of reads of a given sequence present after alignment. As ChIP experiments alone

do not indicate whether the TF binding regulates expression of the gene, ChIP is often paired

with differential expression analysis after TF knockout to validate that the TF binding is regu-

latory [6]. A set of binding sites above a certain S/N enrichment threshold that also affect gene

expression comprise a bottom-up, component-by-component estimation of the TF regulon.

Over the years, this process has been repeated for many of the major E. coli transcription fac-

tors, enabling a bottom-up, ChIP-based estimation of the TRN of E. coli [7,8].
As an alternative approach, network inference methods have been used to provide top-

down estimates of the TRN based on analysis of RNA-seq compendia [9]. In particular, inde-

pendent component analysis (ICA) of a large E. coli RNA-seq dataset has recently provided a

highly informative estimation of the TRN of E. coli [10]. ICA is an unsupervised machine

learning method that identifies statistically independent sets of coordinated variables, termed

components [11]. When applied to gene expression data, ICA identifies sets of genes that dis-

play similar expression patterns, while minimizing overlap in gene content of different sets.

ICA on a data matrix X results in two matrices: M that contains the gene weights in each
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component (to which a threshold is applied to establish component composition), and A that

contains the activity level of each component on specific experimental conditions. ICA has

been applied to large RNA-seq expression compendia to identify independently modulated

groups of genes, termed iModulons, in multiple organisms [12]. These ICA-calculated regu-

lons often overlap significantly with ChIP-determined regulons, supporting the biological sig-

nificance of ICA-calculated TRNs. However, it is still unclear whether a biochemical basis for

these regulons can be found that specifies their gene membership, for example in terms of reg-

ulator binding sequences found uniquely at these promoter regions.

In this study, we developed a quantitative understanding of the E. coli TRN by constructing

machine learning models that predict ICA-inferred regulon membership based on promoter

sequence. With these models, we identified important features that determine regulon mem-

bership. We utilized these machine learning models to understand the basis for complex top-

down regulons involving multiple regulators. Further, we investigated differences between

bottom-up and top-down TRNs to find the general factors underlying TRN estimates from

these methods. Furthermore, we expanded the scope of our analysis to multiple strains of E.

coli, and we explained variation of regulatory activity across strains using sequence features.

Results

Promoter sequence features can quantitatively predict a large part of the E.

coli TRN

First, we constructed machine learning classifiers to predict gene membership in ICA regulons

using promoter sequence features. ICA regulons (also called iModulons) are sets of genes that

show similar expression patterns. We developed a workflow to quantify the gene promoter

sequence into a sequence feature matrix, and then trained a logistic regression (LR) classifier

to predict ICA regulon membership (Fig 1A–1C). We note that we also tested other machine

learning model types, including support vector machines and random forests, and found that

logistic regression broadly exhibited the least amount of overfitting.

The feature matrix used contains: 1) sigma factor related features, including motif score

and Hamming distance of -10/-35 boxes that comprise the RNA polymerase binding site,

spacer length between the -10/-35 boxes, AT content (Fig A in S1 Text), 2) TF related features,

including motif score and shape features (Fig B in S1 Text), and 3) genome organization fea-

tures, including strand direction and binding site distance to transcription start site (Fig 1B).

The sequence features were calculated for all 7 sigma factors, 59 TFs and ICA regulon motifs.

For feature engineering, linear discriminant analysis (LDA) transformation was applied to

sigma factor related features and 14 DNA shape features (see Methods). We included TF bind-

ing site motifs derived from both ChIP and ICA regulons, to investigate any differences in

sequence context that may underlie differences in these regulon sources. We term the full set

of features as ‘engineered features’, the performance of which we contrast with the use of the

TF motif scores as the only features. The detailed information of total 204 features can be

found in the project Github Repository at https://github.com/SBRG/IM-ML/.

The current version of the E. coli K12 MG1655 TRN estimated by ICA contains 58 total reg-

ulons [13]. Models could not be constructed for 6 of these regulons due to small size (only con-

taining a single promoter) or poor promoter annotation, while 5 of the regulons were

regulated by transcription attenuation that is not encoded in the promoter. Model assessment

by cross-validation showed that models for 40 of the remaining 47 regulons had area under

receiver operating characteristic curve (AUROC) scores exceeding a 0.8 threshold, while mod-

els for 7 regulons performed under this threshold (Figs 1D-1F and 1C in S1 Text). We addi-

tionally compared models constructed using ChIP-defined motifs only with models
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constructed with the engineered features (the full set of features), and found that the median

improvement in AUROC was 0.15 (Fig 1G and 1H).

By examining the resulting machine learning models, we then determined the most essen-

tial sequence features for defining regulon membership (Fig 1I). We examined the top 5 fea-

tures of the LR models as ranked by SHAP values [14]. Models for 6 regulons showed good

performance with only ChIP motif information required. The remaining models required

additional sequence features, such as alternate ICA regulon-specific motifs or DNA shape fea-

tures. Other features such as -10/-35 box information or spacer information were not highly

weighted in any regulon models. SoxS was the only regulon that showed no regulator-related

features among the top 5 features, consistent with the poor performance of its model.

Fig 1. Sequence-based TRN prediction workflow and model assessment. (A) Gene promoter regions are extracted from the genome sequence of E. coli K12

MG1655. (B) Feature computation from the promoter sequence extracted from the genome. (C) Feature matrix organization and ICA regulon membership as

the target label. (D) Logistic regression classifier model assessment by area under receiver operator characteristic (ROC) curve and overall predictive model

status. Cutoff = 0.8 for good models. (E) Histogram of Area under the ROC curve for all 58 models. (F) Overview of model performance of good (AUC> 0.8),

bad (AUC< 0.8), data limited models, or regulons that could not be modeled due to a transcriptional attenuation regulatory mechanism. (G) Histogram of the

improvement between motif-only models and models trained with engineered features. (H) Bar chart showing the performance of motif-only models and

models trained with engineered features. (I) Overview of feature importance among the top 5 features in each model. For multi-transcription factor regulons,

the shading indicates how many of the enriched regulators appeared among the top 5 features in the model for the regulon. Red text indicates a bad performing

model (AUC< 0.8).

https://doi.org/10.1371/journal.pcbi.1011824.g001
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We discuss two representative examples of highly accurate models, for ArgR and Lrp (Fig

2). The ArgR regulon is an example of the ChIP motif being sufficient to define the regulon

membership across the genome. The ArgR regulon consists of mostly arginine biosynthetic

genes that are spread out spatially across the genome (Fig 2A). The ChIP and ICA-determined

Fig 2. Examples of predictive models along with regulon-determining sequence features. (A) ArgR regulon determined by ICA mapped across the E. coli

genome (B) ChIP and ICA regulon motifs of ArgR. (C) Model performance of argR with only the motif vs with engineered sequence features. (D) ArgR motif

strength in ArgR-regulated promoters vs random promoters. (E) Feature importance for the ArgR model. (F) Lrp regulon determined by ICA mapped across

the E. coli genome (G) ChIP and ICA regulon motifs of Lrp. (H) Model performance of Lrp with only the motif vs with engineered sequence features. (I) Lrp

motif strength and shape features in Lrp-regulated promoters vs random promoters. (J) Feature importance for the Lrp model.

https://doi.org/10.1371/journal.pcbi.1011824.g002
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motifs for ArgR have significant apparent overlap, with the ICA motif containing two homolo-

gous regions to the ChIP motif (Fig 2B). Consistent with this agreement, the ChIP motif alone

already performs well in specifying the ArgR regulon (Fig 2C), with genes within the regulon

having much higher motif scores than genes outside the regulon (Fig 2D). Correspondingly,

the resulting machine learning model weights the ChIP motif as by far the most important fea-

ture (Fig 2E). The dimer motif noted within the ICA motif underlies a well-characterized hex-

amer structure of ArgR-DNA complexes [15], thus it is surprising that the strength of a single

ArgR ChIP motif is sufficient to specify a functional binding site. It is possible that a strong pri-

mary motif is predominantly responsible for recruiting the complex to the binding site, while

the surrounding motifs serve a supporting or stabilizing role.

The Lrp regulon is an example where the ChIP motif was insufficient to build a predictive

model, but additional engineered sequence features enabled successful determination of a pre-

dictive model. Similar to ArgR, Lrp is an amino acid regulator that regulates diverse genes

located spatially across the genome (Fig 2F). Unlike ArgR however, while the ChIP and ICA

motifs for Lrp have a homologous region, the ICA motif contains an additional large consen-

sus sequence (Fig 2G). Reflecting this, a model constructed with only the Lrp ChIP motif per-

formed poorly, while a model consisting of additional engineered sequence features was able

to successfully predict Lrp regulon membership (Fig 2H). These additional features included

the ICA motif as well as shape features, which are statistically differential (p<10−2, Mann-

Whitney U test) between the Lrp regulon and random genes (Fig 2I). SHAP values verify that

regulator binding site motif scores and shape features are important features (Fig 2J). The

ICA-calculated extended motif does not clearly contain a repeated sequence, so the signifi-

cance of these regions is still unclear. However, we note that the motif is derived from diverse

promoters (Fig 2F) and has highly consistent locations outside of the ChIP motif region, most

notably an extended multi-T region.

Models can be improved through TF-specific sequence features

ArcA is an important global regulator involved in redox regulation [6]. The initial machine

learning model for ArcA showed relatively poor performance, indicating that features we

used, which included the ArcA binding motif determined by ChIP, were not sufficient to

determine the ICA regulon membership. It has been proposed that the binding site of ArcA is

quite diverse and involves a variable number of direct repeats (DRs) of the ArcA motif [16].

Thus, rather than calculating a single ArcA motif score, we hypothesized that it would be more

biochemically accurate to define scores for multiple possible DR motifs with letter probability

matrices (Fig 3A). Interestingly, the ChIP and ICA motifs both contain a partial representation

of this direct repeat structure but fail to capture complete repeats (Fig 3B). We found that the

overlap between ICA and ChIP-determined regulons was relatively low (Fig 3C), which likely

explains the differences in their corresponding motifs. Using position-specific scoring matrices

(PSSMs) generated from letter probability matrices, we calculated DR motif scores and added

these features to the ArcA model. Comparing predictive models generated using multiple DR

motifs and those using only ChIP motifs separately, we found that ArcA model performance

was greatly improved by the inclusion of DR motif scores (Fig 3D). Additionally, the model

feature weights suggest that these direct repeats are critical to predicting ArcA regulon mem-

bership (Fig 3E). The lower distributions of 3DR and 4DR motif scores in ArcA ChIP regulon

suggest that it fails to capture genes with promoters containing extended DR elements, and the

ICA regulon is a good supplement to the missing information (Fig 3F). Example promoters

demonstrate how the DR motifs align with experimentally determined ArcA binding sites (Fig

3G). With better understanding of regulatory interactions, more useful features like the DR
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Fig 3. Regulator-specific features improve model performance for ArcA regulon prediction. (A) Direct repeat motifs previously defined for ArcA. (B) ChIP

and ICA motif of ArcA with direct repeats annotated. The expected direct repeat motif appears stronger in the ICA motif. (C) Venn diagram of ArcA ChIP and

ICA regulons, showing the number of genes in each as well as the overlapping set. (D) Comparison of prediction accuracy with original feature matrix and

multiple DR features. (E) Feature importance of ArcA ICA regulon prediction assessed by SHAP values. (F) Distributions of multiple DR motif scores and

ChIP motif scores for ICA/ChIP regulons and random sequences. (G) Multiple DR motifs aligning to promoter sequences. Green: motif score above cutoff,

Orange: motif score below cutoff, Blue: experimentally determined binding sites. Cutoff values are average motif scores of confirmed DR motifs.

https://doi.org/10.1371/journal.pcbi.1011824.g003
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motifs of ArcA can be extracted from the sequence to explain regulons and improve poor per-

forming machine learning models.

Consensus regulons across TRN-estimation methods contain strong

sequence features

Noting substantial differences between ICA and ChIP-estimated regulons for certain regula-

tors, we wanted to determine whether promoter sequence features underlie any of the

observed differences between ICA and ChIP-estimated regulons. We compared the promoter

features of the genes within ICA and ChIP estimations of six single TF-associated regulons

(Fig 4A). Motif scores of genes in the overlapping region of ChIP and ICA regulons were

found to be significantly higher than those of the remaining genes in the unique regulons (Fig

4B). Thus, the genes that are predicted to be in a regulon by multiple methods are likely the

highest confidence functional binding sites. Additionally, in three of the four observed cases,

EvgA, NarL, and CysB, the non-overlapping regulons had substantially different motif scores

between genes in the ChIP and ICA regulons. This could suggest that the regulons could con-

tain different sub-motifs that are captured differently by each method.

The core Fur pan-regulon contains stronger sequence features and greater

binding strength

To explore TRN variation across multiple E. coli strains, we reconstructed the Fur pan-regulon

of genes and transcription units for 6 strains across 3 phylogroups (Figs 5 and D in S1 Text).

The S/N ratios of Fur binding peaks from ChiP experiments in the core regulon were com-

pared (Fig E in S1 Text). Strains W and KO11FL in the F phylogeny group have higher Fur

binding peak S/N ratios compared to MG1655, while CFT073 in B2 group has relatively low S/

N ratios, indicating lower regulatory activity. Strains in the same phylogroup tend to have sim-

ilar regulatory activity.

Genes with ChIP-exo peaks in promoters are grouped into those with high and low S/N

ratios at a cutoff of 10 (Fig F in S1 Text). While genes of low S/N ratios overlap little with Fur

ChIP/ICA regulons, genes of high S/N ratios have large overlap with both types of regulons

(Fig G in S1 Text). In addition, Fur ICA regulons determined with MG1655 RNA-seq

Fig 4. Comparison between ICA and ChIP-estimated regulons. (A) Venn diagrams showing shared (brown) and

unique (red/green) regulons estimated by each method. (B) Comparison of ChIP motif scores in the consensus regulon

and unique regulons. Genes in the shared regulons display a markedly higher distribution of motif scores.

https://doi.org/10.1371/journal.pcbi.1011824.g004
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Fig 5. Fur pan-regulon analysis. (A) The phylogenetic tree of 6 strains investigated. (B) Fur pan-regulons for transcription units for 6 strains, with

the phylogenetic tree displayed and unique, accessory, core regulons annotated. (C) Comparison of S/N ratios and Fur motif score: core> accessory

> unique. (D) Expression change(log tpmexperiment
tpmcontrol

� �
) versus Fur motif score. Regulatory response correlates well with the motif score.

https://doi.org/10.1371/journal.pcbi.1011824.g005
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expression data appear robust at capturing genes of high S/N ratios across multiple strains (Fig

H in S1 Text), which is consistent with the finding in the previous section that the ICA-based

TRN contains genes of strong regulatory activity.

In the Fur pan-regulon, only genes in the core regulon are regulated in each strain; unique and

accessory regulons vary across strains. Fur regulatory activity tends to be highest for core regulon

genes, followed by the accessory regulon, and finally by the unique regulon. Motif scores follow a

similar trend. These results suggest that binding site strength is the major factor causing regulatory

activity variation between the core, accessory, and unique regulons (Fig 5C). Conserved promot-

ers across strains tend to have high binding site strength, and thus high regulatory activity. Fur-

thermore, a higher motif score indicates a stronger regulatory response, characterized by the

expression change between control and experiment conditions (Fig 5D). These tendencies further

validate that motif score is a good indicator of regulatory activity. In summary, the sequence basis

of TRN’s variation across strains lies in binding site strength, characterized by motif scores.

Discussion

We developed DNA sequence-based machine learning models for gene regulon membership,

resulting in high prediction performance for 40/47 of possible E. coli ICA regulons. Successful

models highlight that gene transcriptional regulation can be quantitatively explained by rela-

tively simple promoter sequence features for many regulons. We found that TF motif scoring

and DNA shape are both critical for determination of top-down or bottom-up regulon mem-

bership. However, certain regulons require additional specialized transcription factor-specific

sequence features, exemplified by the need to add ArcA direct repeat motifs to obtain a good

model for the ArcA regulon.

Generally, a higher motif score indicates higher similarity to the consensus sequence, but it

only accounts for binding site strength with positional frequency, leaving out other properties

of DNA sequences. Therefore, the motif score is important but not always sufficient to deter-

mine regulon membership. To characterize regulator-sequence interactions structurally, DNA

shape features were included in the feature matrix for machine learning models, and they

acted as significant features in the prediction, consistent with previous work in this area [3].

TF-specific DNA shape vectors reflect unique regulator protein structures and provide another

measurement for regulator binding affinity.

We further note that ICA regulons were used to derive TF motifs in addition to the ChIP-

derived motifs. ICA-derived motifs create a partially circular workflow when used as features

in machine learning to predict ICA regulon membership. Still, the workflow is not entirely cir-

cular because ICA only defines the positive set of genes (those expected to have the binding

site motif), but not the negative set (promoters that are not regulated by the TF). We justify the

inclusion of ICA-derived motifs as machine learning features with the purpose of determining

whether the motif derived from the positive ICA gene set is sufficient to distinguish promoters

that are regulated by the TF from those that are not. A second advantage to the analysis is that

we can directly analyze the difference between the ChIP and ICA motifs, to understand what

sequence features underlie the more functional binding site extracted from ICA. This for

example revealed the importance of the direct repeat motif for ArcA, which was stronger in

the ICA-derived motif than the ChIP-derived motif.

Comparing ChIP and ICA regulons demonstrates that ICA seems to preferentially identify

genes of strong binding site strength. If a gene is included by both types of regulons, the regula-

tory interaction is not only assessed by ChIP based experiments but also validated by unraveled

sources of transcription signals. Genes unique to ICA regulons also have high motif scores,

indicating potentially undetected parts of the TRN. Similarly, binding site strength and S/N
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ratios also distribute unevenly across unique, accessory and core regions in the Fur pan-regu-

lon: the core regulon is more active than the unique regulon due to high conservation level of

promoters in core regulon. Considering the relatively larger overlap between high S/N ratio

sites and two types of regulons, the S/N ratio might also be an indicator of the confidence level,

in which case, the regulatory interactions in core regulon have a higher confidence level.

There is substantial room for improvement of model performance for poorly performing reg-

ulons. Models for 6 ICA regulons could not be determined due to lack of necessary information

for feature computation, such as regulator binding site motifs for small regulons or transcription

start site annotation. Improvements on sequence feature computation will improve the accuracy

of machine learning and thus more top-down regulons would be explainable. A better motif

matching method than linear search with PSSM could be developed to improve the computation

of motif scores and better characterize binding site strength. Though PSSM provides the proba-

bility of the segment being a binding site, the shape of the DNA sequence is not considered.

There have already been a few studies using DNA shape in binding site prediction, for example,

improvement was observed in the machine learning model using both DNA sequence and shape

to predict TF binding sites in ChIP-seq datasets [17]. Therefore, predicting a TRN will become

more accurate if the scoring function used in motif matching can be formulated with both PSSM

and DNA shape information. In addition, further characterization of TF-specific sequence fea-

tures could improve prediction of regulons with poorly performing models. For instance, multi-

ple direct repeats motifs of ArcA characterize diverse binding site architecture better than the

ArcA original ChIP-determined motif, and inclusion of this ArcA-specific sequence feature

improves the prediction accuracy for the ArcA ICA regulon. Given enough data, the machine

learning workflow should be able to reconstruct the TRN with high accuracy.

Although we use simple machine learning models used in this work, there has been sub-

stantial progress in recent years building deep learning models to predict the function of non-

coding regions of DNA [18,19]. One advantage of our approach is that it yields reasonable

results with less data. This is the advantage of feature engineering, while the drawback is

reduced power compared to end-to-end deep learning for large datasets that can create its own

features. We expect that in the future, there will be hybrid models that take advantage of the

power of deep learning as well as biological regularization such as motif binding scores that

take advantage of existing knowledge of regulatory mechanisms.

Taken together, this study introduces a reliable workflow to analyze transcriptional regula-

tion activity in prokaryotes based on promoter sequence, using machine learning models to

reconstruct the TRN. The requirements for this workflow are inferred regulons, promoter

architectures of the organism, and transcription factor binding site motifs. While this data is

most available in model organisms in E. coli, it should be possible to extend this to other organ-

isms with minimal additional experimentation. For example, we have recently demonstrated

that the regulon machine learning models can be constructed for certain regulons in Limosilac-
tobacillus reuteri [20], showing its applicability across bacteria. Biophysical factors affecting

TRN architecture and regulatory activity were surveyed, offering directions for data-driven

genome design in synthetic biology to control cellular activity by tuning sequence features.

Methods

The Bitome: Curating and organizing genomic feature information

Genome information for Escherichia coli K-12 MG1655 was collected and curated from the

NCBI RefSeq and RegulonDB databases [21]. The Bitome Python software package was uti-

lized to load and organize sequence-based information from these data sources, including

genome sequence, coding sequences, transcription start sites, transcription units, and
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transcription factor binding sites [22]. The code containing workflows used in this work is

available at https://github.com/sbrg/IM-ML.

Motif score of promoter sequence

A position-specific scoring matrix, or PSSM, was generated for a given TF by aligning its

known binding site sequences and computing the relative probability of finding each DNA

base at each binding site position. As the PSSM coefficients are the log-odds of a probability,

the summation of the log-odds at all nucleotide positions in a putative binding site represents

the probability of motif existence. The algorithm performs 1-D dynamic programming that

iteratively computes the motif score of consecutive equal-length segments (length = motif

length), and the segment of highest score is the matched motif box. Then, the highest score is

output as the motif score of the promoter sequence.

For transcription factors, the search range was -150bp and +50bp to the transcription start site,

and in this study, PSSMs were obtained from RegulonDB’s TF PWMs Browser page, mainly

determined experimentally by ChIP seq experiments [21]. Unlike TF motifs, sigma factor motifs

consist of two binding regions with a gap of varying length: the -10 box (Pribnow box) and -35

box. PSSMs of -10 and -35 boxes for sigma 70/32/38/24/54/28 were generated from annotated

sigma factor binding sites in RegulonDB and consensus sequences from the reference textbook

Transcription regulation in prokaryotes [23]. Other sigma factors were not included due to limited

annotation. The search range was 20bp upstream for -10 box, 40bp for -35 box. In addition to

motif scores of -10/-35 boxes on promoter sequences, an AT-rich 7bp segment in the spacer

between -10 and -35 boxes was matched and the highest AT ratio was used to account for the

extended -10 box [24]. Sigma factor related features were motif scores and Hamming distances of

-10/-35 boxes, the distance from -10/-35 boxes to the transcription start site, spacer length, AT

ratio of the spacer, and AT ratio of the extended -10 box. To reduce feature dimensions, a hyper-

plane decision surface, dividing the sigmulon (genes regulated by the sigma factor) and other

genes, was computed using linear discriminant analysis (LDA), and features were projected to it.

Some motifs in RegulonDB failed to capture the whole binding site consensus sequence, or

other motifs also important to regulation activity were missed. For example, the Fur binding

site motif in RegulonDB didn’t include the whole 19bp length inverted complementary repeats

structure [25]. Motif discovery in ICA regulons using the MEME suite provided motifs missed

by RegulonDB, named “ICA motifs” in contrast to “ChIP motifs.” MEME is a toolbox used to

discover novel motifs in collections of unaligned sequences [26]. Those ICA regulon motifs

were used to supplement information missed by ChIP experiments.

Another possible edge case was that the regulator binding site’s architecture has great diver-

sity, which could not be characterized by a simple motif. For instance, 42% of ArcA binding

sites are 2 direct repeats of 10bp segments, 41% are 3 direct repeats, 15% are 4 direct repeats

and 5% are 5 direct repeats [16]. And hence, direct repeats (DR) motifs were used to compute

features for model performance improvement.

DNA shape feature computation

In this study, 13 types of shape features were computed using DNAShapeR, a DNA shape pre-

dictor in R language [27]. These shape features included 6 inter-base pair shapes: Roll, Helix

Twist (HelT), Shift, Slide, Rise and Tilt, and 7 intra-base pair shapes: Minor Groove Width

(MGW), Propeller Twist (ProT), Buckle, Shear, Stretch, Stagger and Opening.

A pentamer query table integrated with a sliding-pentamer window was used to compute

the shape vectors for all matched TF binding sites. The pentamer table was obtained from the

GitHub repository of DNAShapeR. For predicting intra-base pair parameters, each sliding
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step assigned a shape prediction for the central base pair. For predicting inter-base pair param-

eters, each sliding step assigned a shape prediction for two central base-pair steps. The overlap-

ping values arising from two adjacent pentamers at the same nucleotide position were

averaged. The sliding-window approach thus results in a shape vector [28]. Maximum, mini-

mum, range, and mean values of the shape vector were computed as features. To reduce

dimensions of shape features, LDA was applied to project shape features onto a hyperplane

decision surface, which divides the ChIP regulon and other genes.

Logistic regression classification on ICA regulon membership and

assessment of model performance

A logistic regression classifier was chosen in this study because it is a more interpretable model

compared to common alternatives such as Random Forest or Neural Network models, and the

degree of overfitting is usually smaller. The classifier was implemented using “sklearn.linear_-

model.LogisticRegression” in the scikit-learn Python package [29]. A default elastic net penalty

with 0.5 L1 to L2 ratio was used for a combination of L1 and L2 regularization. The target

labels were binarized ICA regulon memberships. Two feature matrices were trialed: only ChIP

motif scores, and all features. Models that had more than five promoters were assessed by

5-fold cross-validation with stratified sampling preserving the percentage of samples for each

class. Cross-validation was implemented as follows: The dataset was divided into 5 splits, and a

model was trained with fixed hyperparameters on each split with 80% of the data, testing on

the remaining 20%, using the default value for the elastic net regularization weighting. An

average test performance value (AUROC) was calculated to assess model performance. For

models smaller than 5 promoters, n-fold cross-validation was performed where n equals to the

number of promoters. The test was performed in promoter space where genes from the same

promoter were kept in the same group during the random split of the entire dataset into a

train set and a test set. SMOTETomek resampling with k_neighbors = 5 was implemented

using the Imbalanced-learn Python package [30] to achieve a balanced split of train and test

sets. For models containing less than five genes, random oversampling was used to boost the

positive samples to five. Area under the curve of receiver operating characteristic (AUC ROC)

was used to evaluate performance, showing true positive rate versus false positive rate across

all possible classification thresholds. A cutoff of 0.8 was used to indicate good performance.

Promoter prediction and pan-regulon reconstruction

Though genomic information of E. coli MG1655 is well annotated, other strains, such as

W3110, have limited genomic objects annotated, especially the lack of transcription start sites

that indicate the location of promoters. Therefore, predicting promoter locations was neces-

sary for the multi-strain study of E. coli. We aligned sequences of transcription units in

MG1655 to other strains’ genome sequences using BLAST [31]. The other strains studied

were: KO11FL, CFT017, W, W3110, and BL21. Inexact alignments were filtered out; only

exact matches were used to map MG1655 transcription units onto the genomes of other

strains. In this manner, transcription start sites were also determined for all strains.

After promoters were predicted for each strain, Fur ChIP-exo S/N ratios were mapped to

promoter sequences, and transcription units regulated by Fur in each strain were determined.

Since predicted transcription units were all exact matches, the genes in transcription units

were known, therefore genes regulated by Fur were also determined. The Fur pan-regulons of

genes and transcription units was then reconstructed for the six strains of E. coli: MG1655,

KO11FL, CFT017, W, W3110 and BL21, across three phylogroups: A, B2 and F. Unique, acces-

sory and core regulons were annotated based on shared Fur regulation across strains.
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