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Abstract

Biomorphs, Richard Dawkins’s iconic model of morphological evolution, are traditionally

used to demonstrate the power of natural selection to generate biological order from random

mutations. Here we show that biomorphs can also be used to illustrate how developmental

bias shapes adaptive evolutionary outcomes. In particular, we find that biomorphs exhibit

phenotype bias, a type of developmental bias where certain phenotypes can be many

orders of magnitude more likely than others to appear through random mutations. Moreover,

this bias exhibits a strong preference for simpler phenotypes with low descriptional complex-

ity. Such bias towards simplicity is formalised by an information-theoretic principle that can

be intuitively understood from a picture of evolution randomly searching in the space of algo-

rithms. By using population genetics simulations, we demonstrate how moderately adaptive

phenotypic variation that appears more frequently upon random mutations can fix at the

expense of more highly adaptive biomorph phenotypes that are less frequent. This result, as

well as many other patterns found in the structure of variation for the biomorphs, such as

high mutational robustness and a positive correlation between phenotype evolvability and

robustness, closely resemble findings in molecular genotype-phenotype maps. Many of

these patterns can be explained with an analytic model based on constrained and uncon-

strained sections of the genome. We postulate that the phenotype bias towards simplicity

and other patterns biomorphs share with molecular genotype-phenotype maps may hold

more widely for developmental systems.

Author summary

The question of how novel phenotypic variation arises has received much less attention

than natural selection even though both are key processes in Darwinian evolution. Here

we uncover striking anisotropic structure in phenotypic variation for biomorphs, Richard

Dawkins’s iconic schematic model of development, introduced in his book The Blind
Watchmaker. We observe strong simplicity bias: upon uniform random sampling of geno-

types, a simple biomorph can be exponentially more likely to appear as potential variation
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than any individual complex biomorph is. The mapping from genotypes to phenotypes

(GP map) for biomorphs exhibits many similarities to molecular GP maps, including rela-

tively high mutational phenotype robustness which is positively correlated with evolvabil-

ity. Such structure in the arrival of variation can enhance the ability of evolution to find

fitness maxima through neutral exploration. By using evolutionary simulations, we show

that phenotypes that fix in a population may not be the fittest ones, but rather adaptive

phenotypes that are most likely to appear as variation. We hypothesize that similar devel-

opmental bias as observed in the biomorphs system may occur more widely in develop-

mental systems.

Introduction

Three versions of the infinite monkey theorem

In his influential book, The Blind Watchmaker [1], Richard Dawkins’s illustrates how natural

selection can efficiently find fitness maxima in ‘hyper-astronomically large’ [2] search spaces

by introducing an intriguing twist on the famous infinite monkey theorem. He frames his

argument by first introducing the classic case (see Fig 1) with a question: How likely is it that a

monkey randomly typing on a typewriter produces Hamlet’s 28-character phrase

“METHINKS IT IS LIKE A WEASEL”? For a monkey typing on an M-key typewriter, the

probability to produce a specific string of n characters will scale as 1/Mn, which rapidly

becomes unimaginably small with increasing n. By analogy, random mutations on their own

are unlikely to produce meaningful biological novelty. Dawkins’s contrasts this picture with

his second version of the infinite monkey theorem, where a fitness function acts on each letter

independently. The output stops changing once the correct letter is found, so that on average

only M random keystrokes are needed for each letter. Thus, any n letter phrase can be pro-

duced in a number of keystrokes that scales as n × M, which is exponentially smaller than in

the first case. This simple but evocative example illustrates an important property of biological

Fig 1. Three versions of the “infinite monkey theorem” compared. In the 1st version, or the classic case, all outputs of length n are equally

likely, and thus the probability of obtaining a specific output scales as 1/Mn, where M is the number of keys, and n is the length of the desired

output. In the 2nd version, introduced by Dawkins’s [1], a fitness function fixes each correct partial output, so that a desired n-length string is

likely to be found in a timescale that scales as n × M, which is linear instead of exponential in n. In the 3rd algorithmic version, the probability of

obtaining an output scales as 1/MK, where K is the length of a program that generates it [3]. Outputs for which short programs exist therefore

appear with exponentially higher probability. The length of the shortest program with which a given output can be produced is related to the

famous Kolmogorov complexity measure [4] so that the algorithmic monkey theorem also implies a bias towards simplicity.

https://doi.org/10.1371/journal.pcbi.1011893.g001

PLOS COMPUTATIONAL BIOLOGY Bias in the arrival of variation in Richard Dawkins’s biomorphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011893 March 27, 2024 2 / 31

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1011893.g001
https://doi.org/10.1371/journal.pcbi.1011893


sequence spaces. For a given alphabet size M, their size grows exponentially with sequence

length L as ML, but genomic distances remain linear in L because on the order of L mutations

can be used to link any two sequences. By using fitness functions of the kind that Dawkins’s

introduced, an evolutionary search algorithm can exploit this linearity and locate a fitness

maximum in an exponentially large high-dimensional search space within a relatively small

number of randomly generated steps.

In this paper, we explore the evolutionary consequences of a third (algorithmic) version

of this famous trope of monkeys on keyboards (see Fig 1). In Dawkins’s version, the monkeys

directly type out components of the outputs, i.e. the phenotypes. In evolution, however,

novel phenotypic variation is generated indirectly by random mutations which are then

“decoded” through the process of development. To capture this mapping from genotypes

(the inputs) to phenotypes (the outputs), consider instead monkeys generating outputs by

typing at random into a computer programming language [3]. In contrast to the classical ver-

sion of the infinite monkey theorem, where all output strings of length n are equally likely

(with probability p = 1/Mn), in the algorithmic picture, certain outputs appear exponentially

more frequently than others. Consider the following example (from ref [3]): a string of length

n = 1000 of the form “010101. . .” would appear when typing the 21-character program

“print ‘01’ 500 times;”. Therefore, its probability p = 1/M21 is many orders of mag-

nitude larger than the probability p = 1/M1000 for the classical version. Thus, within this algo-

rithmic picture, there are certain kinds of outputs, namely those for which short programs

exist, which have an exponentially higher probability than outputs without such short algo-

rithmic descriptions [3]. Interestingly, an algorithmic picture of evolution is also introduced

in a famous passage from chapter 5 of the Blind Watchmaker [1], where Dawkins’s describes

seeds falling from a tree: “It is raining instructions out there; it’s raining programs; it’s raining
tree-growing, fluff-spreading, algorithms. That is not a metaphor, it is the plain truth. It
couldn’t be any plainer if it were raining floppy discs.”.

Formalising the algorithmic infinite monkey theorem with algorithmic

information theory (AIT)

Can the intuitive link between our simple algorithmic picture and the mapping from geno-

types to phenotypes be made more rigorous? To this end, we turn to the field of algorithmic

information theory (AIT) [4] where a central concept is the algorithmic probability P(x) that a

universal Turing machine, a computing device that can perform any possible computation,

generates a particular output x upon random sampling of input programs. This probability

decays exponentially with the Kolmogorov complexity K(x) of the output string x, where K(x)

is the length of the shortest program with which x can be produced on the universal Turing

machine. Because K(x) is the length of the shortest program that generates output x, these con-

cepts from AIT formalise the algorithmic picture of monkeys typing into a computer program-

ming language: The shortest program has the highest probability. One difficulty with these

formal arguments is that many input-output maps where one might want to apply the intui-

tion of the monkeys on keyboards are not the universal Turing machines upon which AIT

relies. However, an upper bound has recently been derived for the probability P(x) that an out-

put x is obtained upon random sampling of inputs for a broad class of computable input-out-

put maps [5]. It takes the specific form:

PðxÞ � 2� a ~K ðxÞþb; ð1Þ

where the descriptional complexity ~KðxÞ is a suitable approximation to the (uncomputable)

Kolmogorov complexity, and two constants a and b are independent of the outputs x.
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Typically ~KðxÞ is based on some measure of compression [5]. This relationship between

probability and the complexity of the output has been called “simplicity bias” in the context

of computable input-output maps [5]: outputs with high P(x) will have small ~KðxÞ, and out-

puts with large ~KðxÞ will have low P(x) (but not necessarily vice-versa because Eq 1 is an

upper bound). In [3, 5, 6] it was shown that this bound holds for a wide range of input-output

maps.

Simplicity bias in genotype-phenotype maps

It has recently been argued [3] that many genotype-to-phenotype (GP) maps obey the mathe-

matical conditions needed for Eq 1 to be satisfied, formalizing the intuitive connection

between GP maps and the algorithmic infinite monkey theorem.

GP maps typically exhibit redundancy due to neutral mutations [7], where ‘neutral’ sim-

ply means that the mutation does not change the phenotype, which is a simpler definition

than the classical notion introduced by Kimura [8]. This redundancy naturally leads to the

concept of a neutral set made up of all the genotypes that map to a given phenotype p. We

can define the associated probability P(p) that a randomly selected genotype belongs to

the neutral set of p, which is also referred to as the phenotype frequency fp of p. It is directly

proportional to the size of the neutral set. Phenotype bias occurs when there are large differ-

ences in the neutral set sizes (or equivalently in the fp) associated with different phenotypes

p [9].

Strong evidence for this “simplicity bias” was found at the molecular scale for the GP maps

of RNA secondary structure, the polyomino model for protein quaternary structure, and a

popular model of the yeast cell-cycle gene regulatory network [3]. For example, phenotype

bias towards simplicity can explain key patterns in nature such as an observed strong prefer-

ence for symmetry in protein complexes, and the fact that the most frequent RNA secondary

structures found in nature have structures that are highly compressible, and therefore are sim-

ple with low descriptional complexity ~KðpÞ [3]. In RNA especially, detailed quantitative com-

parisons are possible: For example, if the secondary structures are coarse-grained using level-5

of the RNAshapes method [10], then the 68 evolved secondary structures of length L = 126

found in the RNAcentral database [11] of functional RNA are among the 96 structures with

highest phenotypic frequencies out of a much larger set of 1012 topologically possible level 5

structures [9]. This observation does not negate the role of selection. Each functional RNA

structure in the database will have fixed due to natural selection, and a randomly selected

sequence would be unlikely to perform a given biological function (see [12] for a recent discus-

sion). But it does mean that nature was able to produce the “endless forms most beautiful” [13]

of the living world from only a minuscule fraction of the set of all RNA structures, namely

those that are most likely to appear as variation.

The mechanisms by which strong phenotype bias is predicted to influence adaptive evolu-

tionary outcomes includes the “arrival-of-the-frequent” effect [14], which captures the sim-

ple fact that natural selection can only act on the structures that are introduced sufficiently

frequently into the population through random mutations, see also [15]. Depending on the

relevant time scales and mutation rates, concepts such as “free-fitness” [16, 17], or the “sur-

vival of the flattest” [18] are similarly predicted to favor the evolution of high-frequency

structures.

While molecular GP maps such as the RNA model above can be interpreted as a stripped-

down version of developmental bias [19, 20], historically much of the interest in the effects of

bias on the arrival of variation has focused on morphological evolution. Could simplicity bias

also have a dramatic impact on this larger scale? A recent study of an abstract morphological
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model of tissues found that random developmental mechanisms are more likely to be associ-

ated with simple morphologies and moreover, that complex morphologies are less robust to

parameter changes [21]. Similarly, in a model of digital organisms [22], it was found that sim-

ple phenotypes are generated by a higher number of genotypes and are more likely to evolve

from another phenotype. Higher phenotypic frequencies for simpler phenotypes were also

found in a model of digital logic gates [23, 24], Boolean threshold models for gene regulatory

networks [25] and a highly simplified model of neural development [26]. As a further example,

models based on Lindenmeyer systems, a recursive model that can generate plant-like shapes

[27] or sequences of symbols, indicate that simple phenotypes are more robust to mutations

[28] and have higher neutral set sizes [5].

In order to address the status of phenotype bias in systems beyond the molecular scale, we

will focus on another important innovation from The Blind Watchmaker [1], a developmental

model of two-dimensional shapes called biomorphs. As illustrated in Fig 2, these are made up

of vectors, which are defined by (numeric) genotypes and combined into a biomorph pheno-

type in a recursive developmental process. This model produces a rich array of forms. In his

book [1], Dawkins’s was able to gradually steer the evolution of biomorphs towards particular

desired shapes in a relatively small number of generations by carefully choosing phenotypes

that appear upon random mutations. In this way, he used biomorphs to illustrate the power of

natural selection in a more complicated system than the simple “WEASEL” program. The

Fig 2. The biomorphs GP map. (A) Following [1, 29] each genotype, a set of nine integers, is used to produce the corresponding biomorph phenotype,

a 2D shape using the two procedures DefineVectors and DrawBiomorph summarised in algorithm 1. (B) DefineVectors procedure: the integers at the

first eight positions of the genotype (labeled g1 to g8) are used to define eight two-dimensional vectors,~v1 to~v8. (C) DrawBiomorph procedure: The 2D

biomorph shape is created from these vectors recursively, with the number of recursions set by the integer at the ninth position of the genotype, g9.

Here, we have g9 = 4 and thus four recursions, governed by the variable c. Since vector~v8 would first be used in the fifth recursion, it is not used at all in

this case.

https://doi.org/10.1371/journal.pcbi.1011893.g002
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main aim of this paper will be to analyze the generation of phenotypic variation more system-

atically in this system and test the hypothesis that this iconic model of morphological develop-

ment also exhibits simplicity bias and other phenomena similar to those observed for

molecular GP maps. We will also analyze the effect that these biases in the arrival of variation

have on evolutionary dynamics.

We analyze the biomorphs GP map as follows. Firstly, to take into account the fact that

many biomorph phenotypes look highly similar, we define a coarse-graining that maps

them onto a discrete 30 × 30 pixel grid, as shown in Fig 3. We then exhaustively analyse all

genotypes within a fixed parameter range, and use an approximate descriptional complexity

measure [30] to show that the frequency-complexity relationship of biomorph phenotypes

is indeed consistent with the simplicity bias of Eq 1. We show that the GP map of biomorphs

exhibits many other properties that resemble those commonly found in molecular GP

maps, as reviewed in [7, 31]. For example, the phenotype robustness ρp, defined as the mean

mutational robustness of all genotypes g that generate to a given phenotype p, scales as the

logarithm of the frequency fp of the phenotype. Evolvability, a measure that counts how

many novel phenotypes are accessible by point mutations, correlates negatively with

the mutational robustness ρg of an individual genotype g, but positively with phenotype

robustness ρp of the whole neutral set [32]. We can rationalize these effects in the

biomorphs systems as in existing GP maps, where they are captured by a simple analytically

tractable model based on separating genotypes into constrained and unconstrained por-

tions [33–36].

Another big question is to what extent these structural GP map characteristics, which deter-

mine the spectrum of novel variation that appears upon random mutations, affect evolutionary

outcomes when natural selection is also at play. We first show that in the absence of selection,

biases in phenotypic frequencies (which are calculated on a uniform random sampling of

genotypes) are reflected in the average rates with which each biomorph phenotype appears in

an evolving population. Next, we turn to a scenario that is adapted from refs [14, 15] and

includes both variation and selection: Two adaptive phenotypic changes are possible and for a

range of fitness values, we find that the more frequent phenotype fixes first even though it is

not the fittest phenotype. We also study a scenario from Dawkins’s book [1] where he finds it

hard to reconstruct an evolutionary pathway to an ‘insect’-shaped phenotype. He argues that

for such rare phenotypes, while short paths exist, these are only a tiny fraction of a much larger

set of potential paths, and so they are hard to reliably find. We illustrate these shortest paths

and note that if neutral mutations are included, fewer phenotypic changes are needed, making

it easier to create fitness functions that lead to monotonically increasing fitness paths to the

final desired phenotype.

Fig 3. Coarse-graining biomorph figures for the computational analysis. In order to discretize the phenotypes for

our computational GP map analysis, we coarse-grain the final image on a 30 × 30 grid, as illustrated for the phenotype

from Fig 2.

https://doi.org/10.1371/journal.pcbi.1011893.g003
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Algorithm 1 From genotype (g1, g2, g3, g4, g5, g6, g7, g8, g9) to a biomorph drawing (para-

phrased from ref [29])
procedure DEFINEVECTORS(g1, g2, g3, g4, g5, g6, g7, g8) ⊳ This function pro-
duces eight vectors {~vi} from the first eight genome positions: g1 to
g8.
~v 1  ð� g3;g7Þ

~v 2  ð� g2;g6Þ

~v 3  ð� g1;g5Þ

~v 4  ð0;g4Þ

~v 5  ðg1;g5Þ

~v 6  ðg2;g6Þ

~v 7  ðg3;g7Þ

~v 8  ð0;g8Þ

end procedure
procedure DRAWBIOMORPH(i, c, x0, y0, {~vi}) ⊳ Call this function with
i = 4, c = g9, x0 = y0 = 0, and the vectors {~vi} from DefineVectors to
draw the figure.
if i = 0 then ⊳ ensure that the vector index i is between 1 �

i � 8
i  8

else if i = 9 then
i  1

end if
(xnew, ynew)  (x0, y0) + c� ~vi ⊳ add c times vector i to the cur-
rent point
Draw a line from (x0, y0) to (xnew, ynew)
if c > 1 then ⊳ recursion: start function from (xnew, ynew)
DrawBiomorph(i − 1, c − 1, xnew, ynew) ⊳ once with vector ~vi� 1;
c − 1 recursions remaining
DrawBiomorph(i + 1, c − 1, xnew, ynew) ⊳ once with vector ~viþ1;
c − 1 recursions remaining

end if
end procedure

Materials and methods

Dawkins’s biomorphs model

In Dawkins’s biomorphs model [1, 29], phenotypes are two-dimensional figures, recursively

constructed from genotypes, which consist of nine genes g1 to g9, represented by integer values.

This construction is performed in two steps (Fig 2 and Algorithm 1): first, a set of eight vectors

is constructed from the genotypic information and then these vectors are combined recur-

sively to form the final figure, as described in [29]:

1. DefineVectors procedure The x- and y-coordinates of eight two-dimensional vectors are

set by the values of the first eight genes, g1 to g8, as shown in Fig 2B. The allocation of spe-

cific genes to vector components is fixed by Dawkins’s definition of the biomorphs system,

as described in [29] (note however that we use a different indexing convention that high-

lights the symmetry of the figure).

2. DrawBiomorph procedure: The eight vectors,~v1 to~v8, form the basis of a recursive devel-

opmental process, where vectors are added to the figures in several stages. The ninth gene

determines after how many stages this process terminates.

In order to exhaustively analyze the GP map computationally, we restrict the values in

the genotypes to a finite range. We take 7 values for each of the ‘vector genes’ (−3� gi� 3 for
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i 2 [1, ‥, 8]) and 8 values for the ninth gene (1� g9� 8). In this range, there are 78 * 81 = 46,

118, 408 genotypes. This range is somewhat smaller than the values in Dawkins’s examples [1],

but they are near the limit of what is feasible for exhaustive enumerations. We chose a slightly

higher range for the ninth gene than for the first eight genes since changes in the ninth gene

affect the number of drawn lines and therefore have the greatest qualitative effect. The effect of

extending these ranges further can be investigated with the approximate analytic model intro-

duced in this paper. We find that the qualitative observations are unchanged (section C.3 in S1

Text).

Following Dawkins’s program of artificial evolution [1], a point mutation can increase or

decrease a single gene by one integer step. This is a key difference from models like RNA,

where each nucleotide can be exchanged for any other nucleotide.

Quantifying the biomorphs GP map

We use two different approaches to study the relationship between biomorph genotypes and

phenotypes on a large scale. The first approach is computational: we simply consider all geno-

types within a fixed range and generate their phenotypes computationally. In order to be able

to manipulate, analyze and compare the phenotypes, we coarse-grain them on a 2D grid, as

explained below. The second approach is an analytic model based on separating the genome

into constrained and unconstrained parts, a simplification which makes it possible to analyti-

cally calculate some key properties of a GP map [33, 34, 36].

Computational model with discrete phenotypes. For our computational analysis, we

need a clear definition of when two biomorphs share the same phenotype. This definition

should mimic the conditions in the original evolution experiments by Dawkins’s [1], who

applied artificial selection based on the entire appearance of a biomorph (rather than just a

specific feature). Moreover, the biomorphs were drawn on a computer screen of limited size,

such that very small features may have appeared indistinguishable. Thus, biomorphs should

only be treated as distinct phenotypes if they display clear visual differences. To reproduce this

delineation, we project the 2D shape onto a limited-resolution 30 × 30 pixel grid as illustrated

in Fig 3. In detail, this procedure works as follows:

• First, we go through the lines and merge any coinciding line segments (i.e. if the identical

line segment is drawn as part of two longer lines, only one instance is kept). We only work

with one half of the biomorph since the other half is given by axial symmetry.

• Secondly, we place the lines on the grid—the lines are scaled such that the total size of the

grid is 5% larger than the longer dimension of the biomorph shape (either width or height)

and the biomorph is placed at the center of the grid.

• Next, we record, how many lines are contained within each pixel on the grid as follows: we sim-

ply compute the total length of all line elements within the pixel (for computational reasons, we

round to the nearest 10−3 in our calculations). Lines coinciding with the outer boundary of a

pixel are assumed to contribute half their length to the pixels on either side of the boundary.

• Finally, we go through each pixel: if the total line length contained within the pixel is� 20%

of the side length of the pixel, the pixel value is set to one. Otherwise, it is set to zero.

This coarse-graining method has two parameters: the grid resolution (30 × 30) and the

threshold for setting a pixel to one (�20% of the length of the side of the pixel), but the qualita-

tive characteristics of the GP map are robust to changes in these two parameters (see section C

in S1 Text). To draw a coarse-grained phenotype, we simply take one genotype with this phe-

notype and apply algorithm 1.
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To estimate the descriptional complexity ~KðpÞ of a phenotype in this coarse-grained repre-

sentation, we use the block decomposition method [30], which is designed for 2D binary arrays

like our coarse-grained phenotypes. We only consider one half of the phenotype since all bio-

morphs are axially symmetric and use default parameters in the block decomposition method

except for the choice of boundary conditions, for which we choose the sliding window approach,

since the default would be to ignore pixels at the boundary in the complexity calculations.

Analytic model based on sequence constraints. It has been possible to analytically calcu-

late many properties of GP maps [33, 34, 36] within an approximation that separates a geno-

type into constrained and unconstrained positions. The simplest versions of these

approximations rely on the fact that mutations at certain positions of the genotype have no

effect on the phenotype [33]. These positions are called ‘unconstrained’. Those parts of the

genotypes that do affect the phenotype when they are changed are called ‘constrained’.

This technique of sequence constraints can be applied to the biomorphs as follows: The first

eight sites in the biomorph genotype encode eight vectors, but not all of these vectors are used

in the final shape if the developmental process terminates after a small number of stages, as

dictated by gene 9 (Fig 2). Therefore, there are unused vectors and the positions of the geno-

type that encode such vectors must be fully unconstrained since mutations to these positions

can have no effect on the phenotype. In our analytic calculations, we assume that all other posi-

tions, i.e. positions that affect one or more of the vectors in the final shape in some way, are

fully constrained, i.e. that any change in these positions leads to a phenotypic change: this is a

simplifying assumption since it is possible that two lines in the biomorph shape are drawn on

top of one another, and in this case deleting a piece from one of these lines has no visible phe-

notypic effect. Thus, this analytic model is only perfectly accurate for a very detailed phenotype

description: in the analytic model, any small change in any drawn line corresponds to a pheno-

typic change. Even if a line that was previously drawn multiple times is now only drawn once,

this corresponds to a phenotypic change in the analytic model, and if the shape is rescaled, this

also corresponds to a phenotypic change. Thus, the analytic description would be 100% accu-

rate if the biomorphs are drawn with a fixed length scale on a very large screen, if lines that are

generated multiple times in the developmental process are drawn as thicker lines, and if

length-zero lines are included, for example as a visible dot.

Having determined which sites are constrained and which are unconstrained, we can make

analytic predictions for GP map characteristics, such as phenotype frequencies, robustness,

and evolvability values (see section A in S1 Text for detailed derivations). The analytic model

complements the computational results since both rely on opposite assumptions: the computa-

tional model uses coarse-graining, whereas the analytic model is (overly) fine-grained. In

order to compare the data from the two approaches, we restrict the genotypes to the same

range of integers in both cases throughout the main text. However, since calculations in the

analytic approach are fast, we also use this approach to investigate how the biomorphs GP map

would change if we allowed the integer values in the genotype to vary over a wider range. This

modification produces qualitatively similar outcomes, as shown in section C.3 in S1 Text.

Models of evolving populations

To model populations of biomorphs evolving over time, we use the Wright-Fisher model with

selection [38] in combination with a GP map, as done, for example, in refs. [14, 39]. The fitness

of a specific genotype is calculated by mapping it to its phenotype and then using a phenotype-

fitness relationship that is fixed for each simulation. We study two main scenarios. Firstly, a fit-

ness value of one for every phenotype in the flat landscape of scenario 1, and secondly, zero fit-

ness for every phenotype in scenario 2, except phenotypes p0, p1 and p2 which have fitness
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values of 1, 1 + s1 and 1 + s2 respectively, where the si are selection coefficients. Mutations occur

at a constant rate μ per site at each generation [14]. As an initial condition, we choose a random

genotype out of all genotypes that meet the specifications (for example map to a given pheno-

type) and initialize all individuals with this genotype. To ensure that this choice of initial condi-

tions does not affect our measurements, we follow previous work [14] and, for a population of

size N, let the initial population evolve for 10N generations before starting any measurements.

Results

Phenotype bias towards simple phenotypes

Quantifying the strength of the bias. Having introduced the relationship between bio-

morph genotypes and phenotypes, the first question is how many phenotypes exist and how

many genotypes correspond to each of these phenotypes. In the computational results, there

are� 9.8 × 106 different phenotypes for the 78 × 8� 5 × 107 genotypes that are within the

parameter range considered in our analysis (approximately 1.2 × 107 different phenotypes in

the more fine-grained analytic model). The difference in the number of phenotypes shows that

our coarse-graining is rather mild. A few examples from the computational approach are

shown in Fig 4A: among these are phenotypes that are generated by approximately 105

Fig 4. Phenotypic bias. (A) Example biomorph phenotypes: the neutral set sizes (i.e. number of genotypes per phenotype) are indicated above

each image. The phenotypes shown in the first three rows are chosen to represent a range of neutral set sizes, and the last row shows three

phenotypes with a neutral set size of two since� 9 × 106 out of� 107 phenotypes have this neutral set size. (B) The neutral set sizes of all

phenotypes are plotted against their neutral set size ranks (i.e. the number of phenotypes with greater or equal neutral set size). The computational

results are shown in blue and the analytic data of Eq 3 in red. In both treatments, neutral set sizes vary over several orders of magnitude, i.e. there is

strong phenotype bias. (C) The neutral set size of each phenotype is plotted against the estimated complexity of the corresponding coarse-grained

binary image (calculated using the block decomposition method [30]). The black solid line is an approximate, but not a perfect upper bound,

drawn to illustrate the simplicity-bias prediction from Eq 1. Large neutral set size phenotypes tend to be low-complexity biomorphs and high-

complexity biomorphs tend to have small neutral sets (deviations from the upper bound can also be understood within AIT [6]). Inset: Neutral set

size versus complexity for the analytic model, calculated with the bound of Eq 4 which is based on an alternate complexity measure that measures

the size of the constrained part of the minimal genome that generates a given biomorph. The resulting relationship is consistent with the trend in

the computational results. (D) & (E) In order to test whether the results are merely a consequence of the fact that the ninth gene g9 can switch genes

on or off by raising or lowering the number of stages in the growth process, we repeat the analysis with the computational method for a fixed value

of g9 = 8. We find that phenotypic bias towards simple phenotypes also holds in this case.

https://doi.org/10.1371/journal.pcbi.1011893.g004
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genotypes, as well as phenotypes that are only generated by two genotypes. These examples

illustrate that the biomorph system exhibits strong phenotypic bias: neutral set sizes differ by

several orders of magnitude between different phenotypes.

This phenotypic bias can be further observed in Fig 4B where we plot the neutral set sizes

for all phenotypes. The sizes vary across more than six orders of magnitude for both the

computational (blue) and the analytic (red) data. Neutral set sizes approximately follow Zipf’s

law, where the relationship between neutral set size Np and phenotype rank r (i.e. the number

of phenotypes with greater or equal neutral set size) is Np/ 1/r for a wide range of Np. This

fat-tailed distribution means that most phenotypes have small neutral sets: in fact, only

approximately 4 × 105 out of approximately 107 phenotypes have neutral set sizes greater than

ten genotypes in the computational results. Note that phenotypic bias is found even without

the coarse-graining introduced in the computational analysis, since it is also present in the

analytic model, which does not rely on coarse-graining. From the analytic calculations (for

details see section A.1 in S1 Text) we find a range of neutral set sizes that depend only on the

final site of the genotype g9:

Npðg9Þ �
2 k9� 2�g9 if 1 � g9 � 4

2 otherwise

(

ð2Þ

Here k = 7 is the number of distinct integers that are in the allowed range for genotype posi-

tions g1 to g8. Essentially the neutral set size differences in the analytic model are due to the

fact that phenotypes with many unconstrained positions can be produced by a large number

of genotypes [34]: each constrained site can only take one value within the entire neutral set,

but each unconstrained site can take k different values and thus each unconstrained site leads

to a larger number of distinct neutral sequences, i.e. a higher neutral set size. Specifically, each

additional unconstrained site increases the neutral set size by a factor of k. Due to this simple

relationship between constrained sites and neutral set sizes, there can only be a few phenotypes

with large neutral set sizes: it is the constrained positions that define the phenotype, and since

phenotypes with large neutral sets only have a small number of constrained positions, only a

small number of distinct phenotypes with large neutral sets can exist. This argument gives a

relationship between neutral set size Np and phenotype rank r that closely resembles a Zipf’s

law (derivation in section A.2 in S1 Text), as in some previous constrained-unconstrained

models [34], and is plotted in Fig 4B:

rðg9Þ �

k8=Np if Np > 2

2� k8 if Np ¼ 2

8
<

:
ð3Þ

However, note that simplifications were made in the derivation of this equation: the full ana-

lytic expression involved a sum over g9 and we only kept the largest term in each sum. This

gives us a simple expression whose Np-dependence is easy to analyze, but at the cost of under-

estimating the true rank values.

Because the neutral set size only depends on g9 in the analytic model, there are many phe-

notypes with identical neutral set sizes and the same rank (since we have defined the rank as

the number of phenotypes with greater or equal neutral set size), and therefore there are only

five distinct data points for the analytic model in Fig 4B. In the computational data, slight dif-

ferences in coarse-graining imply that some phenotypes, which have exactly the same neutral

set size and a single rank in the analytic model, will have neutral set sizes that differ by a few

percent and thus different ranks, which leads to a ‘step-like’ relationship in Fig 4B.
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Quantifying the bias towards low-complexity biomorphs. As can be seen visually from

the examples in Fig 4A, phenotypes with higher neutral set sizes appear to be less complex. To

quantify this trend, we estimate the descriptional complexity ~KðpÞ with the block decomposi-

tion method [30], as detailed in the Material and Methods section. We find that large-neutral-

set-size phenotypes have low complexity, whereas high-complexity phenotypes have small

neutral sets (Fig 4C). There are phenotypes, which are simple and rare, but we do not find phe-

notypes that are both complex and frequent. Therefore, the GP map is biased towards a subset

of simple biomorph phenotypes. This observation of an upper bound as in Eq 1, with many

phenotypes below the bound, matches the AIT-based predictions by Dingle et al. [5, 6]. The

biomorphs GP map, therefore, presents very similar simplicity bias phenomenology to that

found for molecular GP maps in [3]. This conclusion remains unchanged when using a differ-

ent, Lempel-Ziv-based complexity estimator from [5] (section D.2 in S1 Text).

In the analytic model, we cannot quantify the visual appearance of a phenotype. Instead, we

approximate the complexity of a phenotype by measuring the complexity of a minimal geno-

type that generates the phenotype. Since not all vectors are used in the final phenotype con-

struction, some are irrelevant and this (unconstrained) part of the genotype has no direct

effect on the phenotype. Thus, the full information on the phenotype is contained within the

constrained part of the genotype (if the biomorphs construction process is known), and the

length of this part of the genotype ~K can be used to estimate an upper bound on the descrip-

tion length and hence the complexity. As we have discussed, phenotypes with fewer con-

strained sites have exponentially higher neutral set sizes. Therefore, the analytic calculations

(section A.3 in S1 Text) give the following upper bound for neutral set sizes Np for a phenotype

of complexity ~K (again with k = 7 for the range of values per site):

Np � 2k� 29� ~K=3 ð4Þ

This analytic complexity bound matches the qualitative observation of the computational data

(inset of Fig 4C): complex phenotypes have small neutral set sizes, whereas simple phenotypes

can have large neutral set sizes. Qualitatively, the conclusions also hold when we quantify the

complexity by the number of lines in the biomorph (section D.3 in S1 Text), but the shape of

the relationship differs from a simple log-linear curve in this case.

We note that most of the phenotypes Richard Dawkins’s discusses in his book [1] (for

example the ones shown as illustrations) are complex phenotypes, which we estimate to have

low neutral set sizes. If all phenotypes of relevance have the same neutral set sizes of (Np� 2),

then there is no bias among these phenotypes. However, in the more general case, where there

are no restrictions on which phenotypes evolve, the biases have to be taken into account.

Phenotype bias and simplicity bias for biomorphs with a fixed final gene 9. Our ana-

lytic calculations reveal one key reason for the phenotype bias and simplicity bias in the bio-

morphs GP map: phenotypes with lower values of the ninth gene have fewer developmental

stages, which means that they have more unconstrained sites and thus larger neutral sets.

Their lower number of developmental stages means that they contain fewer vectors and thus a

lower complexity bound, thus giving a log-linear upper bound on the complexity-frequency

relationship, as in Eq 1.

To test if simplicity bias is observed beyond these simple sequence-constraint effects, we

restrict the value of the ninth gene to a constant: in this case, the analytic model would predict

that each phenotype has the same neutral set size and same maximum complexity. However, a

more detailed analysis reveals that neutral set size differences can still exist: for example a sin-

gle ‘vertical line’ phenotype can be generated in many ways, by (overlapping) lines of different

lengths as long as all x-components are zero, whereas other shapes will impose stricter
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constraints on the relative length of the different vectors. These effects are too complex to cap-

ture analytically, and we have to rely on our computational data. We find that even when g9 is

held constant, and the simple sequence-constraint-based arguments no longer apply, we still

observe phenotypic bias (Fig 4D for g9 = 8, Fig M in S1 Text for further values of g9) towards

simple phenotypes (Fig 4E for g9 = 8, Fig N in S1 Text for further values of g9). Thus, the bio-

morphs GP map displays simplicity bias even in the absence of sequence-constraint-based

effects.

Further GP map structure that shapes phenotypic variation

Fundamentally, the GP map determines how random mutations produce novel variation.

Many molecular GP maps have been shown to share a series of structural features beyond sim-

plicity bias that also shape the spectrum of phenotypic variation [7, 31]. This finding prompts

the question of whether the biomorph GP map also exhibits these other features.

We will focus on three structural features of GP maps that affect evolutionary dynamics.

We first explore mutational robustness which quantifies the likelihood of neutral mutations

that keep the phenotype unchanged. Secondly, we study how the mutational robustness of a

phenotype correlates with a measure of evolvability that counts how many different unique

phenotypes are accessible by point mutations. Thirdly, we analyze the phenotypic mutation

probabilities, which measure how likely a mutation lead to a specific new phenotype. The defi-

nitions of these quantities follow standard practice [14, 31, 32, 40], and are given in Table 1.

To help quantify these structural features, we use a random null model from ref [40] where

the neutral set sizes of each phenotype are kept fixed, but the individual assignments of the

genotypes to phenotypes are randomized. Comparing to this random null model helps clarify

where properties arise from the non-trivial structure in the GP map.

Phenotype robustness is high due to genetic correlations. Mutational robustness can be

quantified in several ways. Firstly, genotype robustness ~rg describes what fraction of mutations

is neutral for a given genotype g [32]. To characterize the robustness of a given phenotype p,

the phenotype robustness ρp of phenotype p is defined by averaging the genotype robustness

over the neutral set of phenotype p [32].

In the simple null model with a random assignment of phenotypes to genotypes, one would

expect that a mutation on a genotype g with phenotype p would generate the same phenotype

with a probability proportional to the phenotype frequency fp of p [40]. This null expectation is

Table 1. Definitions of key quantities for GP maps. Each line describes one quantity with a symbol and the definition.

These definitions are commonly used in the literature [7, 14, 31, 32, 40, 41]. For clarity, we use tildes to distinguish

genotypic quantities from corresponding phenotypic definitions.

Np The neutral set size of a phenotype p is the number of genotypes that generate p.

fp The phenotype frequency fp of a phenotype p is the probability that a randomly selected genotype corresponds

to the selected phenotype p. It is thus a normalized measure of the neutral set size Np of p.

~rg The genotype robustness ~rg of a genotype g is the probability that a random mutation on g does not lead to a

change of phenotype.

ρp The phenotype robustness ρp of a phenotype p is the mean genotype robustness of all genotypes g that

correspond to phenotype p.

ϕpq The phenotype mutation probability ϕpq from phenotype q to phenotype p is the probability that a random

mutation on a random genotype in the neutral set of q leads to a phenotypic change to phenotype p.

~�g The genotype evolvability ~�g of a genotype g is the total number of distinct phenotypes that can be obtained

from genotype g through a single mutation.

�p The phenotype evolvability �p of a phenotype p is the total number of distinct phenotypes that can be obtained

from any genotype in the neutral set of p through a single mutation.

https://doi.org/10.1371/journal.pcbi.1011893.t001
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plotted by a solid black line in Fig 5B. However, as can be seen in the same figure, we find a

completely different scaling, namely that ρp/ log(fp)� fp. This is seen both in the computa-

tional results (blue) and in the analytic (red) calculations. In the analytic calculations, we can

rationalize this as follows: each unconstrained site contributes a constant amount of robustness

since it can vary freely without changing the phenotype. However, it contributes multiplica-

tively to the neutral set size since the values at unconstrained sites can be combined in different

ways to generate genotypes within the neutral set. Taken together, this gives a log-linear rela-

tionship, which is derived in section SA.4 in S1 Text:

rp � 1=9� logkðk
8 � 8� fp=2Þ ð5Þ

Note that robustness values in the analytic model are discrete because neutral set sizes and

hence phenotype frequencies are discrete in Eq 2: the allowed values are ρp = 0 and ρp = (1

+ 2n)/9 with integer n in the range 0� n� 3.

This log-linear scaling of the robustness and frequency has been reported in many other GP

maps [7], including the RNA secondary structure GP map [40, 42, 43], Boolean threshold

Fig 5. Structure in the GP map—The phenotypic effect of mutations. In every panel, the computational results are shown in blue and the

analytic relationships from the constrained-unconstrained model are shown as red lines, with markers indicating the discrete allowed values. (A)

Point mutations of a genotype with initial phenotype q can either leave q intact or lead to a phenotypic change to a new phenotype p. The

likelihood of the first outcome is given (on average) by the phenotype robustness of q, ρq; the likelihood of the latter outcome is given by the

mutation probability from q to p, denoted as ϕpq (see Table 1). (B) Phenotype robustness ρp vs. phenotype frequency fp: the computational results

(blue) are compared to the analytic calculation of Eq 5 (red). The black line (ρp = fp) shows the prediction from the uncorrelated null model from

ref [40]. The robustness is much higher than this random null model, i.e. there are genetic correlations. (C) Genotype evolvability ~�g vs genotype

robustness ~rg for both the computational (blue) and analytic (red, Eq 6) approach: we find the expected trade-off between robustness and

evolvability at the genotype level. (D) Phenotype evolvability �p vs phenotype robustness ρp for both the computational (blue) and analytic (red,

Eq 7) approach. As observed more widely [32], robust phenotypes have large neutral sets and are connected with many other neutral networks, so

there is a positive correlation. (E) Mutation probability ϕpq vs. phenotype frequency fp for a fixed initial phenotype q (shown in the corner).

Again, the computational data is shown in blue, the analytic data in red (given by a parametric equation from section A.7 in S1 Text), and the

black line shows the null model from ref [40], which gives ϕpq = fp, Data points with ϕpq = 0 are excluded due to the logarithmic scale, even though

99.997% of all biomorph phenotypes have ϕpq = 0 for this particular initial phenotype q.

https://doi.org/10.1371/journal.pcbi.1011893.g005
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models for gene regulatory networks [25], a multi-level GP map model called Toylife [44], the

polyomino GP map for protein quaternary structure [40, 45], the HP model for protein tertiary

structure [40], empirical data on sequences binding transcription factors and RNA binding

proteins [46] and is typical of sequence-constraint-based models [33], a class of models that

includes our analytic model for the biomorphs system. It may hold for a wider set of input-out-

put maps as well [47], and is close to the maximum possible robustness for this class of systems

[48]. Because robustness is higher than in the null model in all of these cases, two genotypes

that differ only by a single mutation are more likely to correspond to the same phenotype than

two randomly chosen genotypes. Such deviations from the (correlation-free) null model have

been referred to as genetic correlations [40]. The high robustness provided by genetic correla-

tions means that evolving populations can much more easily explore a neutral network than in

an uncorrelated model [40], implying enhanced navigability of fitness landscapes [49].

Genotype robustness and evolvability are negatively correlated. We next analyze the

link between mutational robustness and non-neutral mutations. It is clear that there must be a

trade-off on the genotypic level [32]. There are only a fixed number of possible mutations per

genotype and the more that are neutral, the fewer non-neutral mutations are possible. This

trade-off can be quantified by defining the genotype evolvability ~�g as the total number of dis-

tinct phenotypic changes that are possible through random mutations starting from a given

genotype [32]. In Fig 5C we illustrate this predicted trade-off between genotype robustness ρg

and evolvability ~�g in the biomorphs system. This pattern is seen both in the computational

results (blue) and in the analytic predictions (red) where every non-neutral mutation from a

given genotype gives a distinct phenotype, leading to a simple trade-off derived in section SA.5

in S1 Text:

~�g ¼ 18� ð1 � rgÞ ð6Þ

Phenotype robustness and evolvability are positively correlated. In his “Robustness and

evolvability: a paradox resolved” paper, Wagner [32] argued that the relationship between

robustness and evolvability looks markedly different if we consider the neutral set mapping to

a phenotype instead of individual genotypes. A phenotype with high robustness ρp is likely to

have a large neutral set size. Even if, due to the high robustness, only a relatively small number

of non-neutral mutations is possible from each of the genotypes in this neutral set, the higher

the number of genotypes, the higher the number of novel phenotypic changes accessible

through mutations [32]. This concept is quantified by the phenotype evolvability ep of pheno-

type p (Table 1), which counts the total number of alternative phenotypes accessible from the

entire neutral set. We find that, just as for other GP maps [32, 45], this argument holds for the

biomorphs GP map: phenotypes with higher phenotype robustness tend to have higher pheno-

type evolvability. Again, this is seen both in the computational results (blue) and the analytic

calculations (red) in Fig 5D.

In the analytic calculation, the positive relationship between evolvability and robustness on

the phenotypic level has the following origin: genotypic changes at the unconstrained positions

of p are neutral and thus occur within the neutral set of p. These changes can accumulate and

contribute to evolvability because they can become important if a mutation raises the value of

g9 and a new phenotype with a higher number of developmental stages emerges, for which

these positions can be important. Thus, different genotypes within the neutral set of p can give

rise to different phenotypic changes and the evolvability of the neutral set can be higher than

the evolvability of an individual genotype in the neutral set. The phenotype evolvability in the

biomorphs system can be higher than the genotype evolvability because unconstrained sites

can become constrained (and thus phenotypically relevant) after mutations, as has been shown
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[36] for other abstract GP map models, including an RNA-inspired model. The full calculation

in section A.6 in S1 Text gives the following relationship:

�p ¼

18 if rp ¼ 0

15þ k if rp ¼ 1=9

18� ð1 � rpÞ � 1þ k2 if 2=9 � rp

8
>><

>>:

ð7Þ

While the trend is the same in the computational results (blue) and the analytic predictions

(red), clear deviations between the two approaches exist in the phenotype evolvability calcula-

tion. This deviation may be partly due to the nature of the definition of evolvability: all possible

phenotypic transitions p to q contribute equally to �p, even if they are only possible from a single

genotype in the neutral set of p. Thus, phenotype evolvability is much more sensitive to small

changes in the GP map than quantities like phenotype robustness, which are given by the aver-

age over a neutral set. For example, one reason behind higher evolvability values in the compu-

tational results may be the following: the simplifying assumptions in the analytic model mean

that each genotype in a given phenotype’s neutral set has the same value of g9. In the computa-

tional data however, there are counterexamples; for example any genotype with a zero for all

positions that affect x-components is a vertical line, regardless of the value of g9. These addi-

tional genotypes in the neutral set of the ‘vertical line’ phenotype in the computational data

could facilitate a range of additional phenotypic changes and thus lead to higher evolvability.

Note that in both the analytic calculations and the computational results, the phenotype

evolvability is typically several orders of magnitude lower than the number of phenotypes (�

107). Thus, while the number of possible phenotypic changes from the neutral set of an initial

phenotype can be much larger than the number of possible phenotypic changes from a single

genotype, not all phenotypic changes can be achieved in a single mutation. The reasons can be

understood from a simple example: if the initial biomorph q contains a line pointing in the

positive y-direction, at least two point mutations are needed to change this to a vector pointing

in the negative y-direction (1! 0! −1 in the relevant gene).

We hasten to point out that the word evolvability encompasses a much broader set of con-

cepts than the particular measure we discuss above. Evolvability [50–52] is often defined as the

potential for “viable and heritable phenotypic variation” [51]. Because many different aspects

of biology touch on this capacity, evolvability can be measured in many different ways [53]

and thus the genotype and phenotype evolvability measures used here are just one of the ways

this concept can be unpacked for biomorphs. Interestingly, although the word appears in the

literature at least as far back as 1931 [54], Richard Dawkins’s famous paper on the evolution of

evolvability [29], which builds on the biomorphs model, kicked off the modern use of the

word [55]. In Dawkins’s paper, he notes that evolvability depends on the developmental pro-

cess. He contrasts the classic biomorphs studied here with variations to the model that have

additional developmental steps, such as segmentation. This perspective on evolvability differs

from the one we have analyzed here, where we compare the phenotype evolvability of bio-

morph phenotypes that all originated from the same fixed developmental system. The rich

concept of evolvability thus has many facets [53].

The mean probability ϕpq of a non-neutral mutation from phenotype q to phenotype p
is higher for target phenotypes of high fp. Our phenotype evolvability calculations only tell

us how many different phenotypic changes are possible, but not how likely they are. This latter

concept is quantified by the phenotypic mutation probability ϕpq, which measures how likely a

mutation is to produce phenotype p, given that the phenotype before the mutation is q [14]. It

is an average quantity computed over the neutral set of all genotypes mapping to q. The ran-

dom null model predicts that ϕpq = fp, indicating that the probability of phenotype q mutating
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to phenotype p is largely independent of the source phenotype q [14, 40]. Indeed, in several

molecular GP maps, such a correlation between ϕpq and fp has been found, especially in cases

with a high-frequency initial phenotype [40], but only as a first approximation [56].

Fig 5E plots the mutation probabilities ϕpq for an initial phenotype q of intermediate neutral

set size (Np = 3.5 × 103 in the computational results, Np = 6.9 × 102 in the analytic model).

While it is clear that for accessible phenotypes, ϕpq indeed increases with the frequency of the

target phenotype p, the data deviates from the simple relationship ϕpq = fp. One deviation is

that most phenotypic transitions are impossible (i.e. ϕpq = 0 and thus these ϕpq values do not

appear in this log-log plot): for the initial phenotype q shown in Fig 5E, we have ϕpq = 0 for

�99.997% of all possible biomorph phenotypes p, and this figure is even higher for other less

evolvable choices of q—the phenotype q in Fig 5E, which is based on a genotype drawn at ran-

dom from all genotypes with g9 = 3, has a comparatively high evolvability of 261 phenotypes in

the computational results (60 in the analytic model) and thus a higher number of possible phe-

notypic changes than most other phenotypes. As noted in our discussion of phenotype evolva-

bility, the fact that many phenotypic changes are impossible through single mutations is a

feature of the biomorphs system, and it may not be shared across all GP maps. Interestingly,

the allowed phenotypic transitions, i.e. those with non-zero ϕpq, are mostly transitions to phe-

notypes whose phenotypic frequency is within two orders of magnitude of the phenotypic fre-

quency of q. In the analytic model, this is easy to explain: each gene, including g9 can only vary

by ±1 in a single mutation and thus the neutral set size, which depends on g9 (Eq 2), can only

vary by a limited amount.

If we consider the possible phenotypic transitions shown in Fig 5E, we find that transitions

to target phenotypes with high phenotypic frequency tend to be more likely, i.e. a higher fp
tends to be associated with a higher ϕpq. There is a linear regime (ϕpq/ fp), but also a regime at

a higher frequency where the relationship plateaus. This pattern is observed both in the

computational results (blue scatter points in Fig 5E) and the analytic calculation (red line—

this is given by a parametric equation derived in section A.7 in S1 Text). This parametric equa-

tion summarizes the following relationships: high ϕpq values are predicted for phenotypic

changes to phenotypes with the same or fewer constrained values, which are known to have

equal or larger phenotypic frequencies than the initial phenotype q. Low ϕpq values are pre-

dicted for phenotypic changes to phenotypes with a higher number of constrained values.

These transitions are rare because they can only happen on a specific genetic background

because of the additional constrained values. Since these phenotypic transitions correspond to

a higher number of constrained sites, they have lower phenotypic frequencies than the initial

phenotype q. While the computational and analytic data show good agreement, the computa-

tional data includes additional transitions at very high and very low values of fq: the transition

with fq > 10−2 corresponds to the simple ‘line’-shaped phenotype. This phenotype’s neutral set

is highly affected by the treatment of overlapping vertical lines along the y-axis and by rescal-

ing, and therefore shows large deviations between the two models. Similarly, the computa-

tional data contains additional transitions with low values of ϕpq and fq. As we argued when

comparing evolvability predictions, this is because phenotypic transitions that are only possi-

ble from one or a small number of specific genotypes in the initial neutral set are particularly

sensitive to a change in GP map definition. These differences between the computational and

the analytic data mean that the bias in the mutation probabilities ϕpq is higher in the computa-

tional data.

Overall, our main takeaway is that most phenotypic transitions are not possible through

single mutations, but out of the possible phenotypic transitions, those to phenotypes with high

neutral set sizes tend to be more likely. The second aspect is in agreement with results from a

series of other GP maps [40], even though the exact shape of the relationship with its two
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distinct regimes is different. Because complex phenotypes have low phenotypic frequencies,

this implies that the more likely phenotypic changes tend to be towards lower-complexity phe-

notypes (as confirmed in Fig L in S1 Text). This agrees with previous research that has argued

that transitions from high-complexity phenotypes to low-complexity phenotypes are more

likely than the reverse, both for an L-system-based GP map [57] and a GP map for digital

organisms [22]. However, it is important to note that in the biomorphs GP map these argu-

ments only hold for initial phenotypes with a relatively high neutral set size: if the initial phe-

notype is one of the� 9 × 106 phenotypes with a neutral set size of Np = 2, then there are only

up to 36 possible distinct mutations (18 per genotype for Np = 2 genotypes), and since typically

at least ten phenotypic transitions are found among these 36 distinct mutations, all non-zero

ϕpq values are of a similar order of magnitude and strong bias is impossible.

GP map structure for biomorphs with a fixed final gene 9. Many of the results we find

here for the biomorphs model are generically found in analyses that approximate a GP map

with a constrained/unconstrained sequence model [33, 34, 36]. For example a log-linear rela-

tionship between phenotypic robustness and frequency [33] and a positive correlation between

phenotype robustness and evolvability [36] are easy to qualitatively understand within this

picture.

In the biomorphs model, gene 9 has a special character in generating the constrained-

unconstrained model. So it is natural to ask whether the use of this gene is the only reason we

observe these generic behaviours. To examine this question, we study a set of models with

gene 9 fixed to values ranging from 2 to 8. In our analytic model, this results in each phenotype

having the same number of constrained sites, the same frequency, the same robustness and the

same evolvability. However, as can be seen in section E in S1 Text, for a fixed gene 9 we still

find a log-linear relationship between phenotypic frequency and robustness, a tradeoff

between genotypic evolvability and robustness, a positive correlation between phenotypic evol-

vability and robustness and differences in mutation probabilities, such that mutations to

higher-frequency phenotypes tend to be more likely. The only exceptions are cases with g9�

3, when very few phenotypes exist and analyses on the phenotypic level are not meaningful. In

other words, even for a fixed gene 9, we observe the generic behaviour seen in other molecular

GP maps, albeit on a smaller scale.

Phenotype bias and adaptive evolution

Having analyzed what the GP map can tell us about the phenotypic effect of mutations in gen-

eral, we next investigate how this structure in the arrival of variation affects an evolving popu-

lation. Modeling evolving populations requires us to make assumptions about the way in

which fitness depends on the biomorph phenotype and so we study several scenarios. All data

in the following sections rely on computer simulations that use the computational treatment

of the biomorphs GP map.

Scenario 1: Neutral evolution on a flat fitness landscape. We start with the simplest sce-

nario: a population of size N = 2000 evolves under Wright-Fisher dynamics without the effect

of selection, i.e. all phenotypes are equally fit and there is only genetic drift. Each individual

genotype in each generation could carry any of the approximately 107 different phenotypes, so

we simplify our analysis by focusing on three phenotypes with different neutral set sizes, as

highlighted in Fig 6A. We recorded each time that one of these phenotypes was found in the

population (Fig 6C). Out of these three phenotypes, the one with the highest neutral set size

appears most frequently in the population, followed by the phenotype with an intermediate

neutral set size. The phenotype with the lowest neutral set size only appears twice. The take-

away from this scenario is the intuitive result that, on average, the rate at which individual
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phenotypes appear in a neutrally evolving population is well predicted by their global pheno-

typic frequencies fp (Fig 6B), as previously seen for molecular GP maps [3, 37]. It is not hard to

imagine that these large differences in the rates can also affect adaptive evolutionary scenarios

where fitness plays a role, as we will see later in this paper.

A slightly more complex version of this scenario is analysed in Fig U in S1 Text: here all

tree-like biomorph phenotypes are equally fit, but all biomorphs that are not tree-like are unvi-

able. This scenario approximates a situation where some phenotypic features are under

extremely strong selection, whereas others are irrelevant for survival and therefore neutral.

Qualitatively, we observe the same trends: there is phenotypic bias over several orders of mag-

nitude among the viable phenotypes and this bias is reflected in the evolving population.

Scenario 2: Two peak fitness landscape. Next, following [14, 15], we investigate a more

complex adaptive scenario, a two-peak fitness landscape, where two phenotypes have different

Fig 6. Evolution in a flat fitness landscape. We simulate a scenario where all biomorph phenotypes are equally fit so that there is no selection,

just neutral drift. (A) This plot of phenotypic frequency versus rank highlights three phenotypes that are chosen for more detailed analysis: one

with high frequency in genotype space (yellow), one with medium frequency (teal), and one with low frequency (purple). (B) The normalized

number of times each phenotype occurs in the population is plotted against its phenotypic frequency (for all phenotypes; the chosen phenotypes

are highlighted in color). As might be expected in the absence of selection, we see an approximate one-to-one correspondence (as indicated by

the black line), with some fluctuations at low values of fp. Due to the logarithmic scale, only non-zero values are shown. (C) We plot the

occurrence in the population of each of the three phenotypes highlighted in (A) once every 1000 generations. This representation highlights the

relative frequencies with which the different phenotypes appear in an evolving population of 2000 individuals. The most frequent phenotype

(yellow) appears in the population with an average of about 7 individuals per generation. The intermediate frequency phenotype (teal) appears

in the population on average only once every 28 generations, so about 200 times less frequently than the yellow phenotype. The rarest phenotype

(purple) only appears twice in all 105 generations. To take this into account, we plot both times it appears, even when this is not a generation

that is plotted for the other phenotypes (where we only show one every 1000 generations due to space constraints). Parameters: Population size

N = 2000 individuals, with a mutation rate of μ = 0.1 per site, evolving for 105 generations, initialized on a random initial genotype—we run the

simulation for 10N = 20000 generations before starting the analysis to minimize artifacts of the initial conditions.

https://doi.org/10.1371/journal.pcbi.1011893.g006
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selective advantages over an initial source phenotype. As illustrated in Fig 7, the population

starts at an initial phenotype p0 and most alternative phenotypes are unviable, with two excep-

tions, phenotypes p1 and p2. For simplicity, the population is chosen such that we are approxi-

mately in the strong-selection weak-mutation regime, where adaptive mutations are a limiting

factor. The criterion for the strong-selection weak-mutation regime is that the product of

mutation rate and population size is small and the product of the population size and selective

advantages large [58]: here these quantities are 9 × μN = 0.45 (where the factor of nine

accounts for the fact that the mutation rate is per-site) and N × s� 10.

In this particular example, phenotype p1 has a frequency f1 = 1.5 × 10−5, and phenotype p2

has a frequency f2 = 9.1 × 10−7� 0.06f1. However, since the initial condition is known, the rele-

vant quantities are the probabilities of obtaining p1 and p2 through mutations from our initial

conditions: the whole population is initially undergoing neutral exploration starting on one

Fig 7. Schematic of the two-peaked fitness landscape (following a similar example for RNA [14]). (A) Only three phenotypes have nonzero

fitness—the initial phenotype p0 (grey) and the two adaptive phenotypes, p1 (blue) and p2 (red). Phenotype p1 is more frequent and has a higher

mutation probability �p1p0
from p0 than p2 does, but p2 has higher fitness. A single point mutation can convert p0 into p1 or p2, but not p1 into p2.

(B) The same scenario is sketched as a schematic ‘fitness landscape’—the population starts with the p0 phenotype (grey area) and there are two

fitness peaks, corresponding to p1 (blue) and p2 (red). While p1 is a broader fitness peak and thus a larger mutational target, p2 is a higher fitness

peak. (C) A schematic representation of the relevant part of the GP map: each genotype is drawn as a node in the color of the corresponding

phenotype and two genotypes are connected by an edge if one can be reached from the other through a single point mutation. This

representation illustrates that there are many different genotypes for each phenotype and that the population will therefore evolve neutrally on

the neutral component of p0, until moving to either p1 or p2. Genotypes are only included in this network if they belong to the initial neutral

component of p0, or if they are direct mutational neighbors of that neutral component and map to p1 or p2. The initial neutral component can

be found by starting from the genotype (-2, 0, 2, -2, 0, 0, -2, -2, 3).

https://doi.org/10.1371/journal.pcbi.1011893.g007
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particular genotype g0 in the neutral set of p0 and can therefore drift through the entire part of

the neutral set of p0 that is accessible from g0 through neutral mutations. This part is known as

a neutral component (NC) of p0 [59]. The phenotype mutation probabilities for that NC deter-

mine the rates at which the two adaptive phenotypes are expected to appear [14]: these are also

biased towards p1, with �p1p0
� 9:7� 10� 3 and �p2p0

¼ 1:9� 10� 4 � 0:02�p1p0
. The fitness is

traditionally expressed as Fp = 1 + sp in terms of the selection coefficient sp. For the neutral phe-

notype, s0 = 0, and we vary the two other fitnesses, but we are only interested in the non-trivial

case, where the rarer phenotype has larger fitness, in other words, s2 > s1 > 0.

In our simulations of the fixation dynamics, both p1 and p2 can evolve from the initial phe-

notype p0 and both are fitter than p0. If selection alone was the deciding factor, we would

expect p2 to evolve in every simulation since it has the highest selective advantage. However,

the more frequent phenotype p1 also has a selective advantage over the initial phenotype p0,

albeit a smaller one, and so p1 can reach fixation before p2 appears in the population as poten-

tial variation. Since it is not possible to go from p1 to p2 through a single point mutation, but

only via a two-step process from p1 back to p0 and then to p2, we focus only on the first fixation

event. This is a good approximation since the population is unlikely to go back to p0 via drift

due to the strong selection, as shown in section G in S1 Text. In Fig 8 we analyze how likely it

is that (A) the fitter and rarer phenotype p2 has appeared at least once before the first fixation

event and (B) the first fixation event is a fixation of p2.

Fig 8A shows a heatmap of the probability that the rarer phenotype p2 appears at all in the

population before the first fixation event. This probability is low in the entire range of selective

advantages we consider, but it increases slightly if the high-frequency, lower fitness phenotype,

p1 has a low selective advantage (i.e. s1 = 0.02). This effect occurs because if the high-frequency

phenotype p1 takes longer to go to fixation, this leaves more time for p2 to appear. Note that

the selective advantage of the low-frequency phenotype p2 does not play a role here: p2 could

Fig 8. Probability of discovery and fixation of the fitter and less frequent phenotype p2. (A) Probability that the rarer

phenotype p2 appears in the population before the first fixation event. As long as the more frequent phenotype p1 has a

sufficiently high selective advantage s1 over the initial phenotype, it is likely to appear and fix quickly so that it becomes

unlikely that the rarer phenotype p2 appears even once before p1 fixes. (B) The probability that the rarer phenotype p2 is the

first to fix. p2 can only fix once it appears and so its fixation probability is even lower than the probabilities in (A). These

results for the phenotypic bias are consistent with the trends expected from mutational bias [15]. Parameters: population size

N = 500, mutation rate μ = 0.0001, 103 repetitions per parameter set; we consider a phenotype to have fixed if> 70% of the

individuals carry that phenotype. The populations start from randomly chosen initial genotypes g0 that all belong to the NC

shown in Fig 7 and then evolve neutrally for 10N generations before the three-peak simulations begin.

https://doi.org/10.1371/journal.pcbi.1011893.g008
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be infinitely fit, but when it appears in the population for the first time is unaffected by its

fitness.

It is clear that p2 can only achieve fixation if it appears in the simulation at some point, but

even if it appears, it could still be lost due to stochasticity. Thus, we now turn to the probability

that p2 is the first to reach fixation (Fig 8B). This probability is of a similar order of magnitude

to the probability that p2 appears, indicating that p2 is likely to fix once it appears. However,

since the fixation probability cannot exceed the probability of discovery, it remains low for the

entire range of selective advantages we consider. Interestingly, the impact of varying s1 and s2

is not as strong here as in the original paper by Yampolsky and Stoltzfus [15] that first studied

such effects, because their calculations focus on a simpler case with only three genotypes. For

evolution on GP maps, where there are many genotypes mapping to p0, the constant-rate

assumptions underlying existing work are merely an approximation to the true dynamics [14,

60].

To sum up, in this particular example, the higher rate with which p1 is introduced into the

population due to random mutations dominates over the difference in selective advantage,

which would favor p2. This does not mean that selection does not play a role: selection is the rea-

son why each simulation leads to one adaptive fixation (p1 or p2) and due to selection the proba-

bility of a p2 fixation is highest if the selective advantage of p2 is much higher than that of p1.

Scenario 3: Finding Dawkins’s beetle. The previous subsection analyzed how the balance

between selection and phenotype bias affects a single adaptive fixation step. In general, how-

ever, phenotypic adaptation is a multi-step process, and this is one of the key themes of The
Blind Watchmaker [1]. Here we revisit one example which helps highlight the connection

between multi-step paths in genotype space and fitness landscapes. In the book, Dawkins’s

recounts how he had not recorded the genotype of an insect-shaped phenotype he had

observed [1]. When he tried to find the insect-shaped phenotype again by artificial selection,

this took a long time, even though he remembered what phenotypes were visited on the origi-

nal evolutionary trajectory to the insect-shaped phenotype [1]. He explains the difficulty of

finding the exact correct phenotype in terms of the shortest evolutionary paths between two

phenotypes. Since Dawkins doesn’t write down the exact phenotype, we choose to pick one

insect shape, a “beetle” (inspired by a biomorph example in ref [61]), and illustrate one of the

paths with the smallest number of mutations in Fig 9A. To stay on this path, the ‘correct’ one

out of 18 possible mutations (two possible changes for each of the nine genotype positions if

we ignore boundary effects) has to be chosen at each step, so that the probability of obtaining

this particular 13 step path is 1/1813� 5 × 10−17. Of course, there are many other paths that

lead from the initial to the final genotype with the mutations arranged in a different order, so

that the real probability of obtaining this phenotype by a random walk is closer to its pheno-

type frequency of fp = 4/(78 × 8)� 9 × 10−8. Clearly, the probability of obtaining the final beetle

phenotype by random mutations is extremely small [1]. By contrast, as illustrated by Dawkins’s

second infinite monkey example [1], if there is a fitness function that allows each correct inter-

mediate step to increase fitness, then the probability of success can become exponentially

larger. Dawkins’s uses this example to argue that selection by many small steps is much more

efficient at finding a fitness maximum than a naive mutationist picture where the final bio-

morph shape appears directly in a population [1]. One weakness of this example, and one

shared schematically by his WEASEL program, is that it relies on a fitness function that is

uphill for a large number of intermediate phenotypes.

The GP map perspective allows us to study a different kind of minimal path that explicitly

includes neutral mutations, and which may facilitate stepwise evolutionary adaptation. Neutral

mutations enable genetic drift and cryptic variation [62, 63]. These can facilitate adaptation

because, although each genotype in a neutral set maps to the same phenotype, different

PLOS COMPUTATIONAL BIOLOGY Bias in the arrival of variation in Richard Dawkins’s biomorphs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011893 March 27, 2024 22 / 31

https://doi.org/10.1371/journal.pcbi.1011893


genotypes will have different sets of accessible alternate phenotypes in their one-mutation

neighborhoods [32]. With enough time, a population can in principle explore the entire neu-

tral space, and so find all accessible phenotypes, the number of which is captured by ep,

Wagner’s [32] measure of phenotype evolvability (See Fig 5D). Strictly speaking, not all geno-

types in a neutral set are connected by neutral mutations and Wagner’s [32] phenotype evolva-

bility needs to be computed for each mutationally connected subset, i.e. each neutral

component [59]. Nevertheless, in this context, rather than ask what the absolute minimal num-

ber of mutations is, the more relevant question may be what minimum number of phenotypic

changes a population has to pass through in order to evolve from a dot to a beetle. We illustrate

an example of such a path in Fig 9B. Allowing the exploration of neutral networks greatly

reduces the number of phenotypic transitions from a dot to a beetle when compared to the

absolute shortest path shown in Fig 9A. Importantly, such pathways make it much easier to

imagine how fitness could increase for all steps since the number of intermediate phenotypes

is smaller. This scenario illustrates how neutral correlations in the GP map permit neutral

exploration, which may facilitate the emergence of advantageous phenotypic transitions [32,

49]. In this example, concepts related to both the second and the third versions of the infinite

monkey theorem defined above interact synergistically. While it is important to note that the

exact length and type of the possible shortest phenotypic paths will depend sensitively on the

coarse-graining, just as we saw before for phenotype evolvability values, our argument holds as

long as phenotypic evolvabilities are higher than genotypic evolvabilities, since this ensures

that exploring neutral spaces enables a higher number of transitions than are possible from a

single genotype. This condition is met even in the fine-grained analytic model (see Fig 5).

Discussion

The biomorphs GP map shows many similarities to molecular GP maps

GP maps quantify exactly how random mutations get translated into a highly anisotropic

exploration of the morphospace of phenotypes [3, 9, 64]. A key message of this paper is that

Fig 9. Reconstructing Dawkins’s search for a rare beetle-shaped phenotype. A) An evolutionary path from a dot to the final beetle-shaped

biomorph that uses the smallest number of mutations from a given initial genotype that maps to a dot phenotype to the final beetle-shape

phenotype. B) An evolutionary path from a dot to the final beetle shape with the smallest number of phenotypic changes (but several neutral

mutations may be required between each of the phenotypic changes sketched in the figure). The neutral set sizes of the phenotypes along this path

are shown on the right. A key advantage of this second scenario is that it increases the probability of a path without any fitness valleys for all

intermediate steps (as recently demonstrated for molecular GP maps in Greenbury et al. [49]).

https://doi.org/10.1371/journal.pcbi.1011893.g009
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the biomorphs GP map exhibits many qualitative similarities to molecular GP maps [7, 31].

The main similarities observed are listed below:

1. Biomorphs exhibit a strong phenotype bias: upon random sampling of genotypes, certain

phenotypes are orders of magnitude more likely to appear than others. However, for bio-

morphs, a larger fraction of the morphospace of all structures have small neutral sets than is

typically seen for molecular GP maps.

2. The particular form of the phenotype bias in biomorphs is typically towards phenotypes

with short descriptions. Such ‘simplicity bias’ [3, 5] means that high-frequency phenotypes

have low descriptional complexity, and only low-frequency phenotypes can have high

descriptional complexity.

3. The mutational phenotype robustness ρp scales as the log of the frequency fp that a pheno-

type is obtained upon random sampling of genotypes, and so is much higher than in a ran-

dom null model without correlations between genotypes.

4. The mutational robustness ~rg of an individual genotype g is negatively correlated with a

measure of its evolvability ~�g that counts the number of alternate phenotypes within a one-

mutation neighborhood.

5. By contrast, the mutational phenotype robustness ρp, calculated by averaging ~rg over the

neutral set of p, is positively correlated with the phenotype evolvability �p, which counts the

number of different phenotypes accessible from the neutral set of all genotypes mapping to

phenotype p.

6. The probability of non-neutral mutations ϕpq tends to increase with increasing frequency fp
of the target phenotype p, (if the initial phenotype q has a large enough neutral set). How-

ever, compared to molecular GP maps [40], biomorphs have an unusually high number of

disallowed mutational links between phenotypes, so the positive correlation only holds for

the small fraction of phenotypes that are linked by point mutations.

7. The relationships above can be analytically derived from a simple model that partitions the

genomes into constrained regions that affect the phenotype and unconstrained regions that

do not, but continue to hold in the absence of sequence-constraint effects for a constant

gene nine.

8. The many orders of magnitude difference in the rate at which variation arrives in a popula-

tion can lead to ‘arrival-of-the-frequent’ scenarios [14, 15] where a more frequent, but only

moderately fit phenotype will fix in a population because the fitter phenotype either does

not appear at all within the relevant time scales, or appears with too low a rate to have a

meaningful probability of sweeping to fixation.

9. Neutral exploration can reduce the number of intermediate phenotypes needed to reach a

fitness peak, increasing the likelihood that there are pathways that monotonically increase

fitness.

The large number of similarities between biomorphs and molecular GP maps is at first

sight surprising since the models have important qualitative differences. The molecular models

most studied in the literature are typically based on minimum-free-energy folding (for exam-

ple protein lattice models [65] and RNA folding models [66]), molecular self-assembly (for

example models of protein quaternary structure [45, 67, 68]) or network topologies (for exam-

ple gene regulatory networks [25]). By contrast, the biomorphs model’s organization is quite

different. It imitates biological development through recursive local branching patterns [1].
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Our analytic calculations reveal one key reason for the similarities between the GP map of

biomorphs with that of molecular structures: the analytic model falls into the same class of

sequence-constraint-based models that have been used to explain universal behavior observed

in molecular GP maps [33, 34, 36]. However, sequence-constraint-based models are always

just a simplification to a real GP map. In RNA, positions are often neither fully constrained

nor fully unconstrained, but have variable constraints within a NC (see e.g. [69]). The same is

true for the biomorphs GP map: when we restrict the value of the ninth gene to a constant (sec-

tion E in S1 Text), the sequence constraints in the analytic model are the same for every geno-

type and phenotype, but the computational data still displays variations in neutral set sizes,

complexities, robustness and evolvability. Under what conditions sequence-constraint-based

provide a useful first approximation and whether these conditions hold in specific GP maps, is

a topic for future research.

Simplicity bias and increasing complexity in evolutionary history

Our simulations show that phenotypic bias can have an influence on adaptive evolution: when

several phenotypes convey an adaptive advantage, the more frequent (and therefore usually

the simpler) phenotype is more likely to evolve. It is important to note that this result is not in

contradiction to arguments that complexity can increase over evolutionary time, see e.g. [70].

First of all, natural selection may simply favour more complex phenotypes. Secondly, there are

normally many more phenotypes with higher complexities than those with lower complexities.

Even if the probability that a particular individual phenotype appears upon random mutations

is typically higher if its complexity is lower, the probability P(K) that a random mutation gen-

erates a phenotype of complexity K may still peak at a higher K because there are simply many

more possible phenotypes with higher K (see [3] and section D.4 in S1 Text). Indeed, P(K) is a

very broad distribution for biomorphs. Nevertheless, the question of how simplicity bias inter-

acts with changes in morphological complexity over evolutionary time needs further study.

Simplicity bias in developmental systems

If simplicity bias in GP maps follows from very general intuitions based on the algorithmic

infinite monkey theorem, as formalised by AIT, then we might expect it to hold for a much

wider range of GP maps than have been studied so far [3, 5]. Indeed, our results show that sim-

plicity bias is observed beyond the molecular scale in Richard Dawkins’s biomorphs, which

were created as a simplified description of morphological development. This then prompts the

question of whether we should expect to see simplicity bias more generally in development.

Finding clear evidence for phenotype bias more generally, or simplicity bias more specifi-

cally, in developmental systems will be harder than for molecular systems. Problems typically

studied in evo-devo are far from being as tractable or having the abundant data that the GP

maps for RNA secondary structures or protein complexes have. What kind of evidence would

one expect to find if simplicity bias is at play? One example where it has been invoked as a

non-adaptive explanation is for the prevalence of high symmetry protein complexes [3]. The

basic idea is easy to understand from the algorithmic picture of evolution. Less information is

required to describe bonding patterns that lead to higher symmetry, and thus such phenotypes

have a higher probability of appearing upon random mutations [3]. One could imagine

extending this preference for symmetry, modulated by processes such as symmetry breaking

[71], to larger-scale developmental processes (see [72, 73] for a discussion). In other cases,

including the RNA secondary structures and branching morphologies (see ref [74]), different

signatures of simplicity need to be employed to identify processes that can be described by

shorter algorithms, which should be easier to find through random mutations. An alternative
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way of testing for simplicity bias would be to analyse if random mutations lead to simpler

structures. Indeed, phenotypic changes observed in phylogenies of angiosperm leaf shapes [75]

tend to be strongly biased towards simpler phenotypes and experiments on developmental

pathways for mouse teeth suggest that mutations leading to simpler tooth shapes are more

common than those that lead to increased tooth complexity because the latter scenario

requires a coordinated change in several pathways [76]. Similar bias towards simplicity is also

discussed in a recent study on the morphology of shark teeth [77].

Future work for the biomorphs model

In his work on evolvability, Dawkins’s used the biomorphs “as a generator of insight in our
understanding of real life” [29]. We believe that this tractable toy model of development has

been understudied in the literature, and show that the biomorphs GP map displays a remark-

ably rich structure in the mapping from genotypes to phenotypes. These discoveries suggest a

number of new directions in which our work on biomorphs could be extended. First of all, for

computational efficiency, we only used a specific version of the model with nine genes, the

same number that Dawkins’s used in The Blind Watchmaker. But the number of genes can be

expanded, and several of the rules can be adapted [29]. Such changes to the genotype structure

and the phenotype construction can allow the model itself to evolve, in other words, future

simulations should not just model evolution on the GP map, but also evolution of the GP map,

as advocated in ref [31]. With such an approach, one could study Dawkins’s formulation of the

evolution of evolvability quantitatively and link it to some of the other ways that the concept

evolvability is used (e.g. [52]). For example, certain types of structure in the arrival of variation

may facilitate the evolution of phenotypic novelty [78–80]. Such changes to GP maps are likely

candidates for being under positive selection, and biomorphs may form a good model system

to investigate some of these proposals. These investigations could be supplemented with a sec-

ond toy model introduced by Dawkins’s, the arthromorphs from his book “Climbing Mount

Improbable” [81]. The arthromorphs produce a range of segmented 2D body plans inspired by

arthropods such as Derocheilocaris [81].

By contrast to the RNA model, where the exact identity of the mutations is clear, in the bio-

morphs model, the mutations act on parameters and do not have as clear a biological identifi-

cation. This more coarse-grained approach presents a challenge for modeling developmental

systems [62]. Nevertheless, schematic models such as the biomorphs model have a long track

record of success in evo-devo. Perhaps the most famous are growth models that have success-

fully been used to study developmental bias in plants [82]. Interestingly, gene-regulatory net-

works may also generically exhibit simplicity bias [25] and can display arrival-of-the-frequent

like phenomena [83, 84]. Further work is needed to connect the results of schematic models to

the underlying gene-regulatory networks.

Another direction for future research would be to look at the likelihood of phenotypic tran-

sitions (ϕpq) in more detail. We found that transitions to high-neutral set size phenotypes tend

to be among the most likely transitions, but also that many transitions are not possible in a sin-

gle mutation so that ϕpq = 0. Future work could investigate whether these impossible pheno-

typic changes correlate with larger visual changes than possible phenotypic changes do. Recent

arguments from AIT [85] predict that phenotypes with smaller conditional complexity ~KðpjqÞ
(e.g. phenotypes that are more similar to one another) are more likely to be connected by

mutations. It is reasonable to expect that a mutation-induced change between more similar

phenotypes will result in smaller fitness differences, lowering the probability of deleterious

mutations, and increasing the likelihood of finding pathways with small incremental changes.

Such correlations between the likelihood of phenotypic changes and their fitness are essentially
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what Dawkins’s exploited in the artificial selection experiments in The Blind Watchmaker [1].

By making incremental changes, he was able to evolve rare high-complexity structures such as

his insect-shaped phenotypes. It would be interesting to study in more quantitative detail the

interplay of random mutations and these phenotypic correlations on incremental adaptive

evolution for biomorphs. This research program would entail combining the power of natural

selection, demonstrated by Dawkins’s 2nd infinite monkey theorem, with an algorithmic

account of how structured variation arises, illustrated by the 3rd monkey theorem. Such an

interplay can help illustrate that phenomena such as developmental bias and natural selection

are not in opposition, but should rather be seen as dual causes in a richer explanatory land-

scape. We believe that taking both creative forces into account should be far from “boring”

[86]. Instead, their interaction opens up exciting new avenues for understanding how the

remarkable power of evolution generates “endless forms most beautiful” [13].
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