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Infectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is
caused by the IHN virus (IHNV), which can cause substantial mortality and
economic losses in rainbow trout aquaculture and fisheries enhancement
hatchery programs. In a previous study on a commercial rainbow trout
breeding line that has undergone selection, we found that genetic resistance
to IHNV is controlled by the oligogenic inheritance of several moderate andmany
small effect quantitative trait loci (QTL). Here we used genome wide association
analyses in two different commercial aquaculture lines that were naïve to
previous exposure to IHNV to determine whether QTL were shared across
lines, and to investigate whether there were major effect loci that were still
segregating in the naïve lines. A total of 1,859 and 1,768 offspring from two
commercial aquaculture strains were phenotyped for resistance to IHNV and
genotyped with the rainbow trout Axiom 57K SNP array. Moderate heritability
values (0.15–0.25) were estimated. Two statistical methods were used for
genome wide association analyses in the two populations. No major QTL
were detected despite the naïve status of the two lines. Further, our analyses
confirmed an oligogenic architecture for genetic resistance to IHNV in rainbow
trout. Overall, 17 QTL with notable effect (≥1.9% of the additive genetic variance)
were detected in at least one of the two rainbow trout lines with at least one of the
two statistical methods. Five of those QTL were mapped to overlapping or
adjacent chromosomal regions in both lines, suggesting that some loci may
be shared across commercial lines. Although some of the loci detected in this
GWAS merit further investigation to better understand the biological basis of
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IHNV disease resistance across populations, the overall genetic architecture of
IHNV resistance in the two rainbow trout lines suggests that genomic selectionmay
be a more effective strategy for genetic improvement in this trait.

KEYWORDS

GWAS-genome-wide association study, IHNV infection, rainbow trout (oncorhynchus
mykiss), QTL (loci of quantitative traits), aquaculture, heritability

Introduction

Infectious hematopoietic necrosis virus (IHNV;
Novirhabdovirus salmonid) is endemic to western North America,
and has been spread to parts of Asia, Europe, and the Middle East
(Kurath et al., 2003; Enzmann et al., 2005; Adel et al., 2016; Wang
et al., 2016). In the western U.S., IHNV causes morbidity and
mortality in the commercial rainbow trout (Oncorhynchus
mykiss) and Atlantic salmon (Salmo salar) aquaculture industries,
as well as federal, state and tribal salmon and trout hatcheries
(Kurath et al., 2003; Troyer and Kurath, 2003; Saksida, 2006;
Bootland and Leong, 2009; Breyta et al., 2013). The disease
caused by IHNV, infectious hematopoietic necrosis (IHN), is
associated with acute mortality with losses as high as 90%
(LaPatra, 1998). Rainbow trout fry are the most susceptible life
stage but larger fish can still suffer disease (LaPatra et al., 1990). An
effective IHNV DNA vaccine exists, but the need to inject the
vaccine makes it impractical for immunizing large numbers of
rainbow trout fry (Anderson et al., 1996; Lorenzen and LaPatra,
2005). Novel vaccine and delivery methods remain an active area of
research, given the importance of IHNV to the trout industry (Plant
and LaPatra, 2011; LaPatra et al., 2015; Larragoite et al., 2016).
However, at present no cost-effective vaccine is commercially
available for rainbow trout fry, and additional approaches are
needed to control IHN disease in aquaculture. Genetic
improvement for enhanced disease resistance represents such
approach. The use of selectively bred resistant animals integrates
well into an overall viral disease control strategy that incorporates
good animal husbandry, biosecurity, use of specific pathogen free
eggs and vaccination if practical, cost-effective and available.

Additive genetic variance is the basis for selective breeding in
agricultural animals. Additive genetic variance for resistance to
IHNV infection in rainbow trout has been estimated to be
moderate based on heritability estimates for IHNV survival status
(h2 = 0.23–0.55) and survival days (h2 = 0.02–0.20) in a steelhead
trout (O. mykiss) population (Brieuc et al., 2015) and for survival
status (h2 = 0.25) in the commercial breeding population of Clear
Springs Food (CSF) (Vallejo et al., 2019). These results suggest that
resistant rainbow trout lines can be developed using family-based
selective breeding methods. Furthermore, selective breeding of a
rainbow trout line for resistance to IHNV has been implemented at
the CSF breeding program since the year 2000 (Campbell et al.,
2014), and recently we have shown that genomic-enabled selection
can accelerate the improvement of disease resistance in that
commercial rainbow trout strain (Vallejo et al., 2020). Here, we
examine the opportunity for similar practises in two commercial
aquaculture lines that were naïve to previous exposure to IHNV.

Genomic technologies have improved breeding predictions
accuracy in agriculture by identifying DNA markers linked to

complex phenotypic traits (Barabaschi et al., 2016). Genomic
selection (GS) is a selective breeding strategy that examines
together the association between all genetic markers genotypes in
a population with the trait or traits of interest to predict the breeding
value of an individual animal from the population (Meuwissen et al.,
2001; Goddard et al., 2011). For example, in rainbow trout
aquaculture it was shown that GS can double the accuracy of
breeding value predictions for resistance to bacterial cold-water
disease (Vallejo et al., 2017a), and in recent years the technology has
been widely adopted by the salmonids aquaculture industry and in
other aquaculture species (Song et al., 2023; Yáñez et al., 2023).
Marker assisted selection (MAS) is a simplified strategy of genomic
selection that can be implemented for traits in which most of the
genetic variance is controlled a single locus. For example, MAS for
infectious pancreatic necrosis (IPN) resistance in Atlantic salmon
has resulted in a 75% reduction in the occurrence of that viral disease
in the European Atlantic salmon industry (Moen et al., 2007;
Houston et al., 2008; Houston et al., 2010; Moen et al., 2015). A
key first step in conducting such studies is to identify molecular
markers linked to the trait by studying their co-inheritance in
segregating populations, using analytical approaches such as
genome-wide association studies (GWAS) (Goldstein et al., 2010;
Visscher et al., 2012; Fernando et al., 2014; Misztal et al., 2014;
Vallejo et al., 2017b; Silva et al., 2019; Vallejo et al., 2019). Such
studies are more powerful if they are conducted across populations,
because the overall number and overlapping genomic regions
identified across populations indicate the potential for genomic
selection program and marker assisted selection across different
broodstocks. These approaches are particularly effective when
attempting to initiate a breeding program for a trait in a
population that has not undergone previous selection for that trait.

Troutlodge Inc. maintains a year-round production of eggs though
the use of four distinct broodstock populations, with peak spawning in
February, May, August and November. The two-year spawning cycle
has separated these lines further into even and odd year groups.
Phylogenetic analyses based on genotypes from 96 Fluidigm SNP
assays (Liu et al., 2016) indicated that all four lines are genetically
distinct (Liu et al., 2017). Here, we studied theMay 2019 andNovember
2018 populations because they represent distinct genotypic differences
within the breeding program. Identification of conserved regions
between these two lines may indicate a higher likelihood of
identifying these loci in other commercial trout lines. While these
lines have undergone selection for multiple production traits, there has
been no intentional selection on IHNV resistance. Therefore, these lines
are considered naïve for IHNV andmay be polymorphic for genes with
large effects on IHNV resistance. The CSF breeding population that has
already been subject to IHNV survival selection may be fixed for large
effect loci, making it more challenging to identify large effect QTL
(Campbell et al., 2014; Vallejo et al., 2019).
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Through genome-wide association analyses in the two
commercial rainbow trout lines, the objectives of this study were
to (1) determine whether the opportunity for genomic selection is
consistent across different broodstock lines by comparing the
genetic architecture of the trait in the distinct May and
November lines; (2) identify whether there were shared genomic
regions across lines that are significantly associated with resistance
to IHNV, to assess the potential for improving unrelated lines
through marker-assisted selection; and (3) identify candidate
genes within the QTL regions that will enable future functional
studies aimed at identifying the host genes involved in IHNV
resistance, which in turn can accelerate genetic improvement
through selective breeding and development of more effective
treatments or vaccination models.

Materials and methods

Ethics statement

All fish work was conducted in accordance with national and
international guidelines. The protocol for this study was approved
by the Institutional Animal Care and Use Committee of the
University of Washington, Seattle, WA (Protocol number 4456-01).

Fish rearing and IHNV challenge

In February 2019, rainbow trout fry (age of ~80 days post
hatching) from 100 nucleus families from the Troutlodge, Inc.
November 2018 spawning population (TLUN 2018) were
transported from the Sumner, Washington hatchery to the fish
rearing facility of the United States Geological Survey (USGS)
Western Fisheries Research Center (WFRC) in Seattle,
Washington. The 100 full-sib (FS) families were generated from
100 dams to 62 sires, and they included 37 paternal half-sib (HS)
families. The fish were reared at the USGS facility for 90 days until
the disease challenge with IHNV. Similarly, in August 2019 fry from
103 nucleus families from the Troutlodge May 2019 spawning
population (TLUM 2019) were transported to the WFRC facility
and reared there for 30 days prior to the disease challenge. The
103 FS TLUM2019 families were generated using 75 sires and
103 dams, and they included 28 paternal half-sib families.

For the TLUN2018 population, the fish were approximately
5.0 g in size and ~170 days post hatching at the start of the disease
challenge, and ~21 fish per family were placed in three replicated
tanks (final count N = 2,025 total) and immersed in IHNV (strain
220-90) using standard methods (Brieuc et al., 2015). A mock
control tank with additional 102 fish was immersed in virus-free
cell culture medium and tank water volumes were adjusted to
provide a similar biological density as the 3 challenge tanks.
IHNV was cultured in the fathead minnow EPC cell line
(Winton et al., 2010) at 15°C and viral amount was determined
by plaque assay (Batts and Winton, 1989). A pilot trial was
conducted to determine optimal dosage that was expected to
cause ~50% mortality over 21 days. Confirmed IHNV free trout
fry were immersed in a dose of 2,000 plaque forming units (PFU) per
ml in static water with aeration for 1 h. Total water volume in the

challenge tanks was kept at ~153 L with fish density of ~23 g/L, and
for the static immersion challenge the volume was dropped to ~80 L
(~44 g/L). After 1 h, the water flow was resumed, and the challenge
tanks were monitored for moribund fish or mortalities daily for a 21-
day period and all survivors were euthanized at 21 days. All
experiments were conducted at water temperature of ~15°C to
mimic water temperatures common in the rainbow trout
aquaculture industry in Southern Idaho.

For the TLUM2019 population, the fish were approximately
2.0 g in size and ~110 days post hatching at the start of the disease
challenge, and 30 fish per family were placed in three replicated
tanks (final count N = 3,049 total) and immersed in IHNV (strain
220-90) water. Challenge conditions were as described above, but
the rainbow trout fry were immersed in a dose of 1,000 PFU per ml
based on finding of slightly higher susceptibility in the pre-challenge
pilot study. Total water volumes were similar to the
TLUN2018 population challenge, with a fish density of ~13 g/L
for acclimation and survival trial and ~25 g/L for the 1-h static
immersion challenge.

One main difference in this study compared to Brieuc et al., 2015
was the pooling of individuals from all families and the nearly even
distributing the pooled families across three ‘common garden’
replicated tanks. In contrast to individual family tanks where the
fish from susceptible families are exposed to higher viral load
shedding from their siblings, the ‘common garden’ experimental
design has the advantage that all individuals are exposed to the same
infection pressure regardless of family. Fin tissues were excised from
the parents of the nucleus families at spawning and from all virus-
challenged individuals and preserved in 95% ethanol for DNA
analysis. After the challenge, identification of an individual to
family was performed by genotype analyses. A schematic
illustration of the experimental design of the disease challenges is
presented in Figure 1.

IHNV resistance phenotypes

Two phenotypes were recorded; survival days (days to Death;
DAYS) and status at the end of the challenge (alive or dead at
21 days; STATUS). However, only the survival days phenotype
records were used in the data analyses because survival rate was
lower than 10% in the two challenges. Due to the low phenotypic
variation in the survival status, and resulting low heritability, this
phenotype was excluded from further data analyses.

Fish populations used for GWAS

TLUN 2018: Eight generations including 7,142 individuals with
pedigree records were available for this population. The fish
genotyped represent 100 FS families, including 1,859 offspring
that were sampled from the three challenge tanks. Due to logistic
limitations we had to exclude 150 fish (~8%) from genotyping. The
50 fish that were excluded from genotyping and pedigree
assignments per tank were from the peak mortality days that also
represented the median distribution of the mortality per day curve.
This exclusion of ~8% of the fish from the middle of the phenotypic
distribution does represent small selective genotyping bias, but we
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believe that the effect on over estimation of variance components
must have been very small.

TLUM 2019: Only two generations of pedigree records (parents
and offspring) were available for this population which was used to
combine parents from the May spawning odd and even years. The
fish genotyped represent 103 full-sib (FS) families, including all the
offspring (N = 1,768) that were sampled from the two tanks with the
lower mortality rate.

SNP genotyping and pedigree assignments
of offspring

The DNA samples from the two populations were genotyped
with the Rainbow Trout Axiom 57K SNP array (Thermo Fisher)
following previously described procedures (Vallejo et al., 2019). The
samples were genotyped by a commercial service provider (Center
for Aquaculture Technologies, San Diego, CA). Following genotype
calls, all the SNP markers and samples with call rate (CR) greater
than 95% were retained for pedigree assignments. Parentage
assignment of individual offspring to all known parental pairs
used to produce the full-sib families was conducted using a
customized Perl script (Supplementary Material S1). Assignment
required at least a 99% Mendelian segregation match between each
parent pair and offspring trio.

Before conducting GWAS, the raw marker genotype dataset was
filtered using the software BLUPF90 (Misztal et al., 2015). The QC
retained samples and SNPs with a genotype calling rate ≥0.97, minor
allele frequency ≥0.05, and departures from Hardy-Weinberg
equilibrium ≤0.15. Parent-progeny pairs were tested again with
the BLUPF90 script for Mendelian error rate (MER). Samples
and SNPs were discarded from further analysis if they had
MER ≥1% and ≥3%, respectively. Next, we determined the
physical map position (Genome Accession GCA_013265735.3)
(Gao et al., 2021) of each of the QC filtered markers. A small
fraction of the filtered markers (<3%) that were not mapped to
chromosome sequences did not have a physical map location, and
those markers were excluded from further data analysis. The maps
generated for the two populations can be found in Supplementary
Material S2, S3.

After genotype data QC and filtering of animals and markers in
the TLUN2018 population, a total of 1,796 offspring and 162 parents

were used in the association analysis with genotype data from
33,715 informative SNPs. In the TLUM2019 population,
1,742 offspring and 178 parents were successfully genotyped with
35,135 informative SNPs after QC and filtering of animals
and markers.

Estimation of genetic variance parameters

Three methods were used to estimate genetic variance
parameters, two of which were based on genetic markers and one
used only pedigree and phenotype records.

The DAYS records from TLUN 2018 (n � 1796) and TLUM
2019 (n � 1742) were fit to an animal linear model to estimate
genetic variance parameters for survival DAYS in each population
dataset, separately. We fitted a linear mixedmodel for DAYS records
using this animal model: y � 1μ + Xdd + Za +Wc + e, where y is the
vector of phenotypic records, 1 is a vector of 1s, μ is the overall mean
of phenotypic records, d is a vector of fixed effects,Xd is an incidence
matrix relating records to fixed effects in d, a is a vector of random
individual animal effects, c is a vector of random common
environmental effects (i.e., nested effect of families within
challenge tank), e is a vector of residual effects, and Z and W are
incidence matrices relating records to random animal and random
common environmental effects in a and c, respectively.

For the single-step genomic best linear unbiased prediction
method (ssGBLUP), the variances of a, c and e are:

var
a
c
e

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Hσ2a 0 0
0 Iσ2c 0
0 0 Iσ2e

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

where σ2a, σ
2
c and σ2e are additive genetic, common environment and

residual variances, respectively, and H is a matrix that combines
pedigree (A) and genomic (G) relationship matrices as in Aguilar
et al. (Aguilar et al., 2010), and the variances of a, c and e are
estimated by replacing H with A matrix. We used two and three
tanks in the TLUM2019 and TLUN2018 populations, respectively,
and the effect of tank on DAYS was significant (p < 0.05) only in
TLUM2019 but not in TLUN 2018. Thus, the effect of tank was
included only in the vector of fixed effects (d) for TLUM 2019.

The genetic parameters were estimated using the pedigree-
based BLUP (PBLUP) and PBLUP with genomic data using

FIGURE 1
Schematic representation of the experimental design for disease challenges. The Troutlodge November line is represented in this study by year class
TLUN2018 and the May line is represented by TLUM 2019.
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single-step method (ssGBLUP) under a Bayesian framework,
using the software gibbsf90+ from the computer application
BLUPF90 (Misztal et al., 2015). Our Gibbs sampling scheme
included 250,000 iterations, of which the first 50,000 iterations
were discarded; from the remaining 200,000 iterations one
sample was saved from every 40 iterations, such that results
from 5000 samples were used in the genetic analysis. The proper
mixing and convergence of the Markov chain Monte Carlo
(MCMC) Gibbs sampling approach was evaluated with the R
package CODA (Plummer et al., 2006).

The heritability for DAYS was estimated as:
h2 � σ2a/(σ2a + σ2c + σ2e), where h2 is the estimated narrow-sense
heritability, σ2a is additive genetic variance, σ2c is variance due to
nested effect of families within challenge tank (i.e., common
environment effect) and σ2e is residual error variance.

We also estimated genetic variance parameters using Bayesian
multiple regression with BayesB model (BMR-BayesB) with software
JWAS (Cheng et al., 2018) run with option ‘single-step = false’. We
fitted a linear mixed model for DAYS records using this animal model:
y � 1μ + Xdd + Xb + Za +Wc + e, where X is an n × k matrix of
observed genotype covariates for k total number of SNPs across the
genome for genotyped n individuals, b is a vector of k additive SNP
effects, a is a vector of random polygenic effects. The remaining linear
model terms were already defined in the analyses based on PBLUP and
ssGBLUP, as described earlier. Scaled inverse chi-squared distributions
were used for genetic variance and residual variance as described by
Fernando et al., 2014; Fernando et al., 2014); in these priors, the degree
of freedom was four and the scaled parameters were estimated by
assuming that the proportion of variance of the phenotypic data
explained by the regression is 0.5.

The BMR-BayesB method fits a mixture model to estimate marker
effects, which assumes that there are two types of SNPs: a fraction of
SNPs with non-zero effects (1 − π) that are drawn from distributions
with a marker-specific variance (σ2α), and another known fraction of
SNPs (π) that a-priori have zero effect on the quantitative trait
(Meuwissen et al., 2001). In our study, the mixture parameter π was
assumed to be known and defined to meet the condition k≤ n; where n
is the number of fish with genotype records, p is the effective number of
SNPs, and k � (1 − π)p is the number of markers sampled as having a
non-zero effect that are fitted simultaneously in the Bayesian multiple
regression model (Garrick and Fernando, 2013). In this study, we used
π � 0.999 which enabled sampling about 34 and 35 non-zero effect
SNPs and fitted in the multiple regression model at each MCMC
iteration in the BMR-BayesB analysis performed with TLUN2018 and
TLUM2019 datasets, respectively. The MCMCGibbs sampling scheme
and the assessment of correct mixing and convergence of the MCMC
iterations were like those described in the section of estimation of
genetic parameters with PBLUP and ssGBLUP.

GWAS with wssGBLUP

The November and May spawning lines are two separate and
distinct genetic lines with no shared pedigree. Therefore, the
GWAS was performed separately for the two populations using
DAYS phenotype and genotype data records from
TLUM2019 and TLUN 2018. We conducted GWAS with the
wssGBLUP method using 1-Mb sliding SNP windows (Wang

et al., 2012; Misztal et al., 2015). Briefly, the effects were
calculated for individual SNPs in the first step, as shown
below. Afterward, the effects of all SNPs within a 1-Mb
distance were added and recorded for each sliding window.
Briefly, the 1-Mb window slides by one SNP at a time from
the first SNP until the last SNP on each chromosome and the
results for SNPs that are included in the window are jointly
summarized; thus, the estimates for SNP effects is a moving
average of n adjacent SNPs included in the 1-Mb window (Misztal
et al., 2015). The choice of a 1-Mb window size was based on our
recent estimate of strong LD (r2 ≥ 0.25) spanning on average over
1 Mb in the rainbow trout genome (Vallejo et al., 2018).

In GWAS with wssGBLUP, the weights for each SNP are one for
the first iteration, which indicates that all SNPs have the same weight
(i.e., single-step GBLUP). For the subsequent iterations (2nd, 3rd, etc.),
the weights are SNP-specific variances that are calculated using the
estimate of the SNP allele-substitution effect from the previous iteration
and the corresponding SNP allele frequencies (Wang et al., 2012). The
estimates of SNP effects were calculated using a weighted relationship
matrix, using the following equation: û � DM′[MDM′]−1âg, where û is
the vector of the estimated SNP effects;D is a diagonalmatrix of weights
for variances of SNP effects; M is a matrix linking genotypes of each
SNP to each individual; and âg is the estimate of the additive genetic
effect for genotyped animals. The individual variance of SNP effects,
which corresponds to the diagonal elements of D, was estimated as
suggested by Zhang et al. (Zhang et al., 2021): σ̂2u,i � û2i 2pi(1 − pi),
where: û2i is the square of the effect at SNP i, and pi is the observed allele
frequency for the second allele of SNP i. In this GWAS, we used results
from the second iteration of wssGBLUP, because generally they provide
the highest accuracy of genomic predictions (Vallejo et al., 2016) and
marker effects (Wang et al., 2012; Irano et al., 2016; Melo et al., 2016;
Vallejo et al., 2016). The linear model used for GWAS followed that of
the ssGBLUP model previously described for the estimation of genetic
variance parameters. It was conducted using Gibbs sampling methods
implemented in the software gibbsf90+ from the computer application
BLUPF90 (Misztal et al., 2015).

GWAS with bayesian multiple regression

We conducted GWAS for DAYS with BMR-BayesB model using 1-
Mb non-overlapping SNP windows (Fernando et al., 2014; Fernando
et al., 2016). The BMR-BayesBmodel uses the same pedigree information
and all animals that had phenotype and genotype records, following the
wssGBLUP method. The 1-Mb window’s posterior probability of
association (WPPA) with the phenotype was used to estimate the
window’s proportion of false positive as PFP � 1 −WPPA
(Fernando et al., 2017).

The GWAS for DAYS was performed with BMR-BayesB
method (Cheng et al., 2018) implemented in the software JWAS
(Cheng et al., 2018). The linear model used for GWAS conformed
with the BMR-BayesB model previously described in the section on
estimation of genetic variance parameters. The BMR-BayesB uses
MCMC Gibbs sampling in the GWAS analysis (Garrick and
Fernando, 2013). The MCMC Gibbs sampling scheme and the
assessment of correct mixing and convergence of the MCMC
iterations have also been previously described (section on
estimation of genetic parameters). We did not perform GWAS
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using sliding SNP windows with BMR-BayesB because this method
has not been implemented in the software JWAS.

Detection of QTL

Quantitative trait loci (QTL) associated with resistance to IHNV
were defined as 1-MB SNP windows that explained additive genetic
variance (AGV) higher than 1.9% (Vallejo et al., 2022). All QTL
windows that were mapped to the same chromosome and were
located within less than 20 Mb from each other were defined as
belonging to the same QTL region. We have previously used these
conservative criteria for defining QTL in GWA analyses in rainbow
trout to reduce the type I error rate as much as possible.

For comparison of the QTL genome positions with those
previously identified in the Clear Springs Foods (CSF) line
(Vallejo et al., 2019), the positions of the flanking SNPs from
each QTL in that study were identified on the current version of
the rainbow trout reference genome (Gao et al., 2021).

Identification of protein coding genes in the
QTL regions

Standard template queries were used on AquaMine v1.2
(https://aquamine.rnet.missouri.edu/aquamine/) to identify
protein coding genes in the most significant QTL SNP
windows and to search for the genes description, the GO
terms and predicted pathways.

Results

IHNV survival phenotypes

The mortality rate in both challenges was higher than predicted
based on the pilot dosing experiments. In the TLUN2018 population
the average mortality per tank was 86% with SD of 2% compared to

2% mortality in the mock trial control tank. In the
TLUM2019 population the average mortality per tank was 92%
with SD of 11% compared to no mortality in the mock trial. Daily
mortality peaked on day 5 in the TLUN2018 challenge and on day
7 in the TLUM2019 challenge (Figure 2).

Heritability of resistance to IHNV

The estimated heritability for survival days had a range of
0.08–0.25 and 0.15–0.23 across three methods of estimation in
TLUM2019 and TLUN 2018, respectively (Table 1). These
estimates of low to moderate heritability for the phenotype of
survival days underline the potential for genetic improvement of
IHNV resistance through selective breeding in these two rainbow
trout breeding populations. Due to the very low survival rate in
both experiments, heritability for the binary trait of survival on
day 21 post challenge was not different from zero (data not
shown), and this trait was excluded from genome-wide
association analysis.

QTL associated with resistance to IHNV

In the TLUM2019 population GWAS, we detected 14 SNP
windows of 1-Mb that were associated with resistance to IHNV
(AGV≥1.9%) with either the wssGBLUP or the BMR-BayesB GWAS
methods (Table 2). The 14 QTL windows were determined to be
located within 11 chromosomal regions. Eight of those QTL
windows were detected with wssGBLUP and six were detected
with BMR-BayesB. Jointly, the 11 QTL regions explained up to
49.7% of the additive genetic variance when accounting only for the
largest effect SNPs window detected in each QTL region. As shown
in Figure 3, the QTL windows on chromosomes 1 (AGV = 11.4%), 7
(AGV = 7.0%) and 23 (AGV = 7.6%) had the highest proportions of
explained additive genetic variance. However, only one QTL
window, the window on chromosome 1, had a false positive
probability (PFP) lower than 0.05.

FIGURE 2
Distribution of daily mortality post IHNV immersion challenge in the commercial rainbow trout TLUN2018 population (A) and in the
TLUM2019 population (B). The bars represent standard deviation (SD) between tanks.
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In the TLUN18 population, we detected 13 SNP windows of 1-
Mb in 12 chromosomal regions that were associated with resistance
to IHNV (Table 3). From these windows, six were detected with
wssGBLUP and seven were detected with BMR-BayesB. The 12 QTL
regions jointly explained up to 69.23% of the additive genetic
variance when accounting only for the largest effect SNP window

detected in each QTL region. As shown in Figure 4, the QTL
windows on chromosomes 13 (AGV = 13.2%), 21 (AGV = 7.9%)
and 29 (AGV = 12.2%) had the highest proportions of explained
additive genetic variance. The windows detected with BMR-BayesB
on chromosomes 13 and 29 had a false positive probability (PFP)
lower than 0.05.

TABLE 1 Genetic parameter estimates for IHNV resistance (survival days, DAYS) in two rainbow trout aquaculture strains.

Straina Methodb Genetic parameterc

σ2g σ2c σ2e h2

TLUM2019 PBLUP 1.97 ± 1.02 1.79 ± 0.53 19.45 ± 0.88 0.08 (±0.04)

ssGBLUP 3.89 ± 1.04 1.45 ± 0.46 18.34 ± 0.83 0.16 (±0.04)

BMR-BayesB 5.36 ± 0.76 1.60 ± 0.36 16.47 ± 0.80 0.25 (±0.03)

TLUN2018 PBLUP 8.75 ± 2.17 0.63 ± 0.46 28.21 ± 1.59 0.23 (±0.05)

ssGBLUP 5.55 ± 1.29 1.01 ± 0.56 30.43 ± 1.21 0.15 (±0.03)

BMR-BayesB 8.22 ± 1.22 1.86 ± 0.45 27.57 ± 1.36 0.23 (±0.03)

aVariance components analysis was conducted using fish from the year-class (YC) 2019 of the Troutlodge May-spawning strain (TLUM, 2019) and from YC, 2018 of the November-spawning

strain (TLUN, 2018).
bGenetic parameters were estimated using pedigree-based BLUP (PBLUP), single-step GBLUP (ssGBLUP), and Bayesian multi regression with Bayes B (BMR-BayesB) methods. The survival

days records were analyzed using animal linear models.
cGenetic parameter estimate (± standard error): σ2g is the additive genetic variance; σ

2
c is the variance due to the nested effects of families within challenge tanks; σ2e is the residual error variance;

and h2 is the estimate of narrow-sense heritability for survival days.

TABLE 2 Characteristics of quantitative trait loci associated with resistance to IHNV in the TLUM2019 aquaculture strain of rainbow trouta.

Chrb AGV (%)c PFPd GWAS methode Physical map (bp)f Window flanking SNPs SNPs per window

Start End Start End

1 11.4 0.03 BMR-BayesB 48,049,099 48,967,892 Affx-88955618 Affx-88930703 17

1 3.5 N/A wssGBLUP 48,632,135 49,623,888 Affx-88952382 Affx-88938488 24

3 3.6 N/A wssGBLUP 51,430,431 52,429,704 Affx-88933807 Affx-88905010 25

5 4.0 0.38 BMR-BayesB 19,009,057 19,953,516 Affx-88906315 Affx-88940046 23

6 1.9 N/A wssGBLUP 25,083,663 26,066,808 Affx-88919141 Affx-88953291 29

7 7.0 0.26 BMR-BayesB 21,017,550 21,868,247 Affx-88941998 Affx-88958253 23

11 3.9 0.44 BMR-BayesB 57,030,022 57,990,833 Affx-88911746 Affx-88928288 20

12 2.3 N/A wssGBLUP 66,510,299 67,487,681 Affx-88913164 Affx-88923715 27

19 3.1 N/A wssGBLUP 15,012,572 15,954,248 Affx-88940815 Affx-88911258 15

23 7.6 0.09 BMR-BayesB 13,029,157 13,930,763 Affx-88914566 Affx-88906601 23

23 2.8 N/A wssGBLUP 28,704,800 29,704,625 Affx-88958162 Affx-88907862 25

30 3.0 0.54 BMR-BayesB 14,136,821 14,976,738 Affx-88904384 Affx-88943429 8

30 2.8 N/A wssGBLUP 20,284,236 21,267,747 Affx-88907684 Affx-88904888 27

32 1.9 N/A wssGBLUP 33,372,622 34,329,512 Affx-88926444 Affx-88945805 31

aGWAS, performed using fish from year-class 2019 families from the Troutlodge May-spawning nucleus breeding population.
bChromosome numbers are based on the USDA_OmykA_1.1 genome assembly (Gao et al., 2021; GenBank Assembly Accession GCA_013265735.3).
cExplained additive genetic variance (AGV) by tested 1-Mb window (%). The 1-Mb windows with AGV≥1.9% were defined as associated with IHNV, resistance.
dPFP is the probability of false positives defined as PFP � (1 −WPPA), where WPPA is the window posterior probability of association. WPPA was estimated only with the BMR-BayesB

model.
eGWAS, conducted using weighted single-step GBLUP (wssGBLUP) and Bayesian multiple regression with BayesB (BMR-BayesB) methods.
fSNP, positions in base pairs (bp) based on rainbow trout reference genome sequence (Gao et al., 2021; GenBank Assembly Accession GCA_013265735.3).
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FIGURE 3
Manhattan plots showing the association of 1-Mb SNPwindows with resistance to IHNV in year-class 2019 families from theMay-spawning nucleus
breeding population (TLUM) using two GWAS models: (A) Weighted singe-step GBLUP (wssGBLUP); and (B) Bayesian multiple regression with BayesB
(BMR-BayesB).

TABLE 3 Characteristics of quantitative trait loci associated with resistance to IHNV in the TLUN2018 aquaculture strain of rainbow trouta.

Chrb AGV (%)c PFPd GWAS methode Physical map (bp)f Window flanking SNP SNPs per window

Start End Start End

1 5.9 0.34 BMR-BayesB 37,024,181 37,985,996 Affx-88940706 Affx-88919761 19

3 2.6 N/A wssGBLUP 51,104,028 52,087,029 Affx-88955207 Affx-88951474 26

5 7.0 0.23 BMR-BayesB 43,002,688 43,987,163 Affx-88954192 Affx-88917739 19

6 2.6 0.57 BMR-BayesB 25,050,389 25,985,630 Affx-88944756 Affx-88920694 31

8 2.2 0.68 BMR-BayesB 53,052,503 53,969,345 Affx-88937384 Affx-88925776 28

10 5.5 N/A wssGBLUP 35,810,116 36,734,512 Affx-88928023 Affx-88930040 40

13 13.2 0.02 BMR-BayesB 41,096,300 41,961,648 Affx-88930116 Affx-88942374 16

17 5.4 N/A wssGBLUP 26,575,732 27,437,130 Affx-88955005 Affx-88913439 21

19 2.8 0.63 BMR-BayesB 59,071,937 59,743,776 Affx-88919240 Affx-88958570 17

21 7.9 N/A wssGBLUP 25,853,803 26,848,204 Affx-88919092 Affx-88925348 34

23 1.9 N/A wssGBLUP 15,680,409 16,648,321 Affx-88911729 Affx-88934547 25

29 (Y) 2.6 N/A wssGBLUP 4,884,989 5,764,531 Affx-88912960 Affx-88948694 13

29 (Y) 12.2 0.03 BMR-BayesB 6,021,854 6,963,833 Affx-88953281 Affx-88950556 11

aGWAS, performed using fish from year-class 2018 families from the Troutlodge November-spawning nucleus breeding population.
bChromosome numbers are based on the USDA_OmykA_1.1 genome assembly (Gao et al., 2021; GenBank Assembly Accession GCA_013265735.3).
cExplained additive genetic variance (AGV) by tested 1-Mb window (%). The 1-Mb windows with AGV≥1.9% were defined as associated with IHNV, resistance.
dPFP is the probability of false positives defined as PFP � (1 −WPPA), where WPPA is the window posterior probability of association. WPPA was estimated only with BMR-BayesB model.
eGWAS, conducted using weighted single-step GBLUP (wssGBLUP) and Bayesian multiple regression with BayesB (BMR-BayesB) methods.
fSNP, positions in base pairs (bp) based on rainbow trout reference genome sequence (Gao et al., 2021; GenBank Assembly Accession GCA_013265735.3).
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Two 1-Mb QTL windows were detected within chromosomes
1, 23 and 30 in the TLUM2019 population (Table 2) and
chromosome 29 in the TLUN2018 population (Table 3). In
each of those four cases we defined the two windows to be
part of the same QTL region since those pair of windows were
detected within a region smaller than 20 Mb. It is also important
to note that within each of those four pairs of 1-MB QTL
windows each window was detected by a different GWAS
detection algorithm, which further support the findings of true
QTL in those four chromosomal regions.

Predicted protein coding genes identified in
QTL regions

Gene content from the most significant QTL was identified by
exploring protein coding genes that were annotated by the NCBI
Refseq and by the EBI Ensembl. We confined our analyses to the
QTL windows that were detected in TLUM2019 on chromosomes
1 (PFP<0.05) and 23 (detected by two GWAS methods and
PFP<0.1), and in TLUN2018 on chromosomes 13 (PFP<0.05),
21 (strongest QTL detected with the wssGBLUP method) and
chromosome Y or 29 (PFP<0.05). The list of annotated genes
from those five QTL regions is provided in Supplementary
Material S4, including the start and end positions on the
chromosome, and where available, the gene description and
the metabolic pathways that were linked to those genes in
Refseq. The list of all the Gene Ontology (GO) terms that
were assigned to the genes from each of the five QTL regions
is presented in Supplementary Material S5.

Discussion

Overall, we identified oligogenic structure for resistance to
IHNV in the two commercial rainbow trout breeding
populations that were evaluated in this study, with several
moderate-effect QTLs accounting for large portion of the total
additive genetic variance (AGV). In the May line (TLUM 2019)
we detected 11 QTL regions that jointly explained nearly 50% of the
AGV, and in the November line (TLUN 2018) we detected 12 QTL
regions that jointly explained nearly 70% of the AGV. Only the QTL
1-Mb windows detected in TLUN2018 on chromosome 21 (25.8-
26.8 Mb) and TLUM2019 on chromosome 30 (14.1-14.9 Mb) in this
study are co-localized near QTL regions that were detected in
previously in a third aquaculture breeding population, in which
selection for resistance has occurred (Supplementary Material S6)
(Vallejo et al., 2019). Due to the lack of major QTL for this trait in
the commercial rainbow trout populations that were analysed, it is
likely that genomic enabled selection, rather than marker assisted
selection, is the more effective approach for improving the accuracy
of breeding predictions for IHNV disease resistance. A similar
conclusion was reached in our previous study on the third
aquaculture breeding population (Vallejo et al., 2020). Therefore,
our hypothesis that a major QTL for resistance to IHNV may be
found segregating in the two aquaculture breeding populations -
since they do not have history of exposure or selective breeding for
IHNV - has not been supported by the results of this study.

We identified overlapping QTL regions located on
chromosomes 3 and 6 between the two populations and
neighboring QTL regions that may be in linkage disequilibrium
(LD) with the same causative gene or genes on chromosomes 1,

FIGURE 4
Manhattan plots showing the association of 1-Mb SNP windows with resistance to IHNV in year-class 2018 families from the November-spawning
nucleus breeding population (TLUN) using two GWAS models: (A) Weighted singe-step GBLUP (wssGBLUP); and (B) Bayesian multiple regression with
BayesB (BMR-BayesB).
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5 and 23 (Figure 5). Rainbow trout aquaculture strains have been
shown to have long-range LD, particularly on chromosome 5
(Vallejo et al., 2018; Pearse et al., 2019; Vallejo et al., 2019), and
thus we cannot rule out the possibility that QTL windows that are
even within 20 Mb from each other are in LD with the same
causative gene or genes. QTL that are detected in multiple
populations are more likely to be true QTL and are also of
greater interest for further investigation. The QTL from
chromosomes 1 and 23 were also the most significant QTL that
were detected in TLUM 2019, making them strong candidates for
further evaluation and analyses. Seven QTL located on
chromosomes 8, 10, 13, 17, 19, 21 and 29 were unique to the
TLUN2018 population and six QTL located on chromosomes 7, 11,
12, 19, 30 and 32 were unique to TLUM 2019. Interestingly, the most
significant QTL detected in TLUN2018 from chromosomes 13,
21 and 29 were not shared with TLUM 2019. In comparison
with the Clear Springs Food (CSF) population QTL detected in
our previous study (Vallejo et al., 2019) we determined that the
TLUN2018 QTL on chromosomes 21 and the TLUM2019 QTL on
chromosome 30 are co-localized with the CSF QTL that were
detected on the same chromosomes (Supplementary Material S6),
making QTL-21 that was also one of the strongest QTL in the
TLUN2018 population another top candidate for further evaluation.

The age and size of the fish in the two disease challenge
experiments was substantially different. The fish from the
TLUN2018 population were challenged at the age of ~170 days
post hatching (dph) with an average weight of 5 g and from the
TLUM2019 population at the age of ~110 dph with an average
weight of 2 g. Rainbow trout were previously found to remain
susceptible to IHNV over a range of sizes but show decreasing
susceptibility with increasing size (LaPatra et al., 1990; LaPatra,
1998). For example, rainbow trout ranging from 1.7, 3.4 and 7.4 g
exposed to IHNV (1 × 105 pfu/mL) had cumulative percent

mortality of 55%, 44% and 18%, respectively (LaPatra, 1998).
Previous studies implicate defence barriers or early innate
responses as being important for genetic differences in IHNV
susceptibility (Quillet et al., 2007; Purcell et al., 2010; Bledsoe
et al., 2022). Adaptive immune response such as neutralizing
antibodies is important for long-term immunity to IHNV but is
unlikely to contribute to survival of naïve fish in an acute challenge
(Lorenzen and Lapatra, 1999). Given that the mechanism
underlying the impact of age and size on acute IHNV
susceptibility has not been characterized, we cannot rule out
differential immune responses. However, IHNV susceptibility at
two different sizes was found to be a stable trait in both clonal
rainbow trout lines (Quillet et al., 2007) and full-sibling rainbow
trout families (Purcell et al., 2010). Therefore, while overall
susceptibility may change with size, the line or family
susceptibility was not found in previous studies to have a
transitory effect related to size or age. Taking all this information
together, we cannot rule out that the meaningful difference in age
and size had an impact on the trait of resistance to IHNV between
the two disease challenges in this study and might have contributed
in part to the detection of different QTL between the two
populations.

The heritability estimates for IHNV resistance in our study were
of low to moderate magnitude (0.08-0.25) and somewhat lower than
those reported previously in two different rainbow trout population
(Brieuc et al., 2015; Vallejo et al., 2019). The different genetic
background of those populations may be a factor in the
differences in heritability estimates. In addition, one notable
difference from those two previous studies was that here we used
a common garden design for the disease challenge compared to
individual family tanks that were used in the previous studies.
Hence, in the current study design the effect of the common
shared environment on the family-based response to IHNV

FIGURE 5
Schematic illustration of chromosome positions of co-localized and unique QTL windows associated with resistance to IHNV (AGV ≥1.9%) in the
rainbow trout November 2018 and May 2019 spawning nucleus breeding populations.
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infection and survival was reduced, which might have contributed to
less inflated heritability estimates compared to the previous studies.
Still, the estimated low-moderate heritability in the current study
underlines the potential for genetic improvement through selective
breeding for IHNV resistance in the two commercial rainbow trout
populations.

As described in the methods section, 150 fish (~8%) were
excluded from genotyping in the TLUN2018 population. This
exclusion of ~8% of the fish from the middle of the phenotypic
distribution does represent small selective genotyping bias, but we
believe that the effect of that small bias on over estimation of
variance components must have been very small.

The heritability estimates based on genotype data were comparable
across populations when using the same algorithm (0.15–0.16 with
ssGBLUP and 0.23–0.25 with BMR-BayesB). Clearly the estimates with
BMR-BayesB were higher than ssGBLUP. The difference is caused by
the way that the two algorithms estimate the additive genetic variance.
In ssGBLUP, the additive genetic variance is calculated using the
estimated random individual animal effects. In comparison, with
BMR-BayesB the estimate of additive genetic variance is the sum of
the additive genetic variance due to random animal polygenic effects
(i.e., breeding values of animals) and randommarker effects (Fernando
et al., 2016).

A larger difference in heritability values was observed using the
pedigree and phenotype records (PBLUP; 0.08 and 0.23 for
TLUM2019 and TLUN 2018, respectively). This difference may
be caused by the reference population that is used by the different
models. The reference for the genomic model is the same-generation
population fromwhich the genotypes and phenotypes were obtained
(also called the training population for genomic selection models),
whereas for PBLUP it is the initial generation in the pedigree records
(Vallejo et al., 2021; Vallejo et al., 2022). The pedigree records for
TLUN2018 trace back through eight generations to a single base
population, providing a large dataset of pedigree records to estimate
the genetic relatedness of the offspring with phenotypes from this
population. In contrast, the TLUM2019 population was formed
from a merger of two year-classes that were established from two
different base-populations. Thus, the pedigree relies on only one
generation of parents and offspring to calculate relatedness among
the offspring. Therefore, we believe that the PBLUP heritability
estimate for TLUN2018 is more reliable than that for TLUM 2019.
The true heritability values for the two populations are likely within
the genomic-based estimates of 0.15–0.25.

Two multiple regression GWAS methods were used to identify
QTL associatedwith resistance to IHNV in this study. Suchmethods are
powerful at the population level since they account for linkage
disequilibrium between neighbouring loci, and utilize information
from all available pedigree, genotype, and phenotype data (Garrick
and Fernando, 2013; Misztal et al., 2014). We have previously shown
that using two high quality and widely used algorithms for GWAS
reveals more information about the genetic architecture of complex
disease resistance traits in rainbow trout (Vallejo et al., 2017b; Vallejo
et al., 2019; Vallejo et al., 2022). The detection of QTL with both
algorithms increases the confidence in the detection of true QTL. In the
current study, the QTL on chromosomes 1, 23 and 30 in
TLUM2019 and on chromosome 29 in TLUN2018 were detected by
both algorithms using the threshold of AGV >1.9. GWASmethods that
are based on windows are sensitive to the SNP density and allele

frequency (Li et al., 2021). In this studywe used 1Mbwindows based on
our experience with rainbow trout aquaculture populations where 1Mb
is approximately the average size of the LD extent of r2 > 0.25 (Vallejo
et al., 2018; Vallejo et al., 2020). We agree that very high or very low
number of SNPs per window might affect the signal intensity and that
LD is not evenly distributed across the genome.

Several of the genes located within the detected QTL regions
may be implicated to be involved in immune response to infection
based on their GO term and metabolic pathways predictions.
However, it is important to caution that at this point we do not
know if the true causative variant for each QTL is found in a protein
coding gene. Therefore, our discussion here is limited to the gene
functions that are predicted by the gene models that are based on
orthology and sequence similarity to genes from model species.
Furthermore, for practical reasons we restricted the list of annotated
genes to those that were found within the 1-Mb QTL window
boundaries, although it is possible that due to linkage
disequilibrium with the causative genome variant, the causative
genes or sequence variants may be located near rather than
inside the SNP windows that were found to have the strongest
association with the survival days phenotype. Here, we explore the
genes from the five most supported QTL regions that may be
involved in the innate or adaptive antiviral immunity of the
rainbow trout based on the genome annotation and gene
prediction models used in Refseq and Ensembl.

The shiftless antiviral inhibitor of ribosomal frameshifting (shfl)
gene is located in the QTL region on chromosome 13. It is an
interferon-stimulated gene that in human has been shown to
function as a broad-spectrum antiviral factor with suppressive
activity against various types of RNA and DNA viruses (Wang
et al., 2019; Suzuki and Murakawa, 2022). Also located within the
chromosome 13 QTL region is the notch receptor 3 gene (notch3),
which is involved in the notch signalling pathway. Among its
multiple functions, the notch signalling pathway was also
implicated to be involved in innate lymphoid cell fate decision
and immune response (Golub, 2021). IL15 receptor alpha chain
(il15ra) is located within the QTL region on chromosome 21. The
interleukin-15-mediated signalling pathway is involved in STAT
activation of natural killing (NK) cells and has been implicated in the
suppression of HIV latency (Macedo et al., 2022). Also in this QTL
region, suppressor of cytokine signalling 2 (socs2) is a negative
regulator of receptor signalling pathway via JAK-STAT and of type I
interferon-mediated signalling pathway (Zhang et al., 2021; Kausar
et al., 2022). Hence, by their known role in feed-back regulation of
signalling pathways associated with viral suppression, both il15ra
and socs2 are possible positional candidates for being the causative
gene or genes responsible for the association of this chromosomal
region with IHNV resistance in rainbow trout. The IKAROS family
zinc finger one (ikzf1) is found in the QTL on chromosome 23. The
structure and expression pattern of this gene confirm that it is a
master switch of hematopoiesis and a key regulator of gene
expression in lymphoid cells in rainbow trout (Hansen et al.,
1997). In mammals, ikzf1 is required for B-cell development, and
has been shown to regulate the development and function of
dendritic cells and monocytes in human (Cytlak et al., 2018).
Also located in this QTL region is the B cell linker protein,
which is a molecular scaffold essential for the B cell receptor
signalling pathway and required to promote B cell development
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(Pappu et al., 1999). The wingless-type MMTV integration site
family member 2 (wnt2) is located in the QTL region on
chromosome one and in cattle it was found through linkage
disequilibrium analysis to be associated with resistance to a
pathogenic bacterium and antibody response (Pauciullo et al.,
2015). The QTL on chromosome Y (29) does not contain genes
that can be implicated directly in antiviral immunity based on their
functional annotation. However, it contains multiple genes encoding
for the spliceosome sub-units 2 and 5. Alternative splicing has been
recently implicated as a component of host-pathogen interactions in
human and other mammals (Boudreault et al., 2019; Chauhan et al.,
2019; Rotival et al., 2019; Yamaguchi et al., 2022; Lyu et al., 2023),
including direct interactions between viral proteins and sub-unit 5
(U5) (Boudreault et al., 2022a; Boudreault et al., 2022b). Thus, it is
plausible that variants of the spliceosome subunits may have an
impact on the host-pathogen interactions after IHNV infection, and
potentially may be the causative variant or variants for resistance to
IHNV infection that was detected on chromosome Y QTL.

Conclusion

The genetic architecture of resistance to IHNV in two
commercial rainbow trout aquaculture strains was found to be
oligogenic. None of the QTL detected had a large enough effect
on the genetic variance for the trait that would merit marker assisted
selection. Four of the five most supported QTL contain genes that
may encode proteins that can be involved in antiviral function or
that regulate components of the innate or adaptive immune
response of the host. The fifth contain multiple sub-units of the
spliceosome, which has also been recently implicated to be involved
in host-pathogen interactions in human and other mammals.
Further evaluation to refine those QTL regions with more genetic
markers will bring us closer to the identification of the causative
genome variants that are associated with IHNV resistance in the two
commercially important rainbow trout aquaculture strains.
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