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ABSTRACT 
 

Plants cannot move, so they must endure abiotic stresses such as drought, salinity and extreme 
temperatures. These stressors greatly limit the distribution of plants, alter their growth and 
development, and reduce crop productivity. Recent progress in our understanding of the molecular 
mechanisms underlying the responses of plants to abiotic stresses emphasizes their multilevel 
nature; multiple processes are involved, including sensing, signaling, transcription, transcript 
processing, translation and post-translational protein modifications. This improved knowledge can 
be used to boost crop productivity and agricultural sustainability through genetic, chemical and 
microbial approaches. 
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transcriptional regulation; epigenetic regulation; microRNAs; splicing. 
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1. INTODUCTION 
 
Solar energy, CO2, and O2 are all utilized by 
plants to sustain the Earth's environment by 
absorbing CO2 and producing O2 and organic 
matter. Plants distribution and productivity are 
mostly governed by abiotic factors, which are 
non-living elements of the environment. Drought, 
heat, cold, nutrient shortage, high salt, and toxic 
metal levels in the soil are all constant threats to 
plants in nature. These abiotic stressors are 
limiting the amount of agricultural land available 
around the world, which has a negative influence 
on crop output [1]. A deeper understanding of the 
mechanisms by which plants adapt with 
environmental stress is essential for global food 
security. 
 
Plants have developed interlinked regulated 
mechanisms that allow plants to adapt and 
respond to the environments quickly in order to 
withstand environmental obstacles. Abiotic stress 
has a profound impact on plant physiology, 
inducing wide-ranging alteration in cellular 
activities. Only a few of the changes are non-
adaptive responses that merely reflect stressor 
induced injury, such as the detrimental changes 
in membrane fluidity and protein structure 
caused by heat or cold stress, as well as the 
disruption of enzyme kinetics and molecular 
interactions caused by toxic ions in the 
environment. Alternatively, many of the 
modifications are adaptive reactions that result in 
greater stress tolerance, making them suitable 
crop development targets for breeding. Aspects 
of the adaptive response include the healing of 
stress-induced damage, the restoration of 
cellular homeostasis, and the modification of 
growth to levels that are appropriate for the 
particular stress condition [2,3]. 
 
Biological responses to abiotic stress are 
complicated, as proven by genetic, physiological, 
biochemical, and molecular research [1]. They 
include stress detection and signal transmission, 
transcription and transcription processing, 
translation, and post-translational protein 
modifications, among other things. A variety of 
cell structures and processes, including the cell 
wall, plasma membrane, cytoplasm and nucleus, 
as well as chloroplasts, mitochondria, the 
endoplasmic reticulum and peroxisomes, can 
initiate these processes [3]. While certain stress-
related reactions are universal (for example, the 
detoxification of excessive reactive oxygen 
species (ROS)), others are specific to a particular 
stressor [4-8]. 

The purpose of this Review is to summarize our 
present understanding of the components and 
processes involved at different levels of the 
molecular response to abiotic stress. We 
emphasize the characteristics that are similar to 
those of other stressors. Precision genome 
editing as well as other methods of improving 
crop production are now being discussed. 
 

2. STRESS SENSING 
 
A plant's stress response is triggered when 
environmental stimuli physically or chemically 
alter the biomolecules within the cell. Because 
it's difficult to prove that a biomolecule feels 
stress directly, most potential stress detectors 
have been discovered in indirect ways+ [9,10]. 
Secondary messengers including as Ca

2+
, ROS, 

nitric oxide, and phospholipids are expected to 
be affected when sensors are disrupted, and to 
find the mutations that cause these disorders, 
genomic screens have been created [11]. 
 

2.1 Sensing Changes in Osmolarity 
 
Plant cells are subjected to hyperosmotic stress 
due to both drought and salinity. The 
hyperosmolarity-gated Ca2+ channel OSCA1 in 
Arabidopsis thaliana was revealed as a putative 
stress sensor as a result of a calcium imaging-
based genetic screen in the plant [12]. A 
decrease in Ca

2+
 influx into guard cells and root 

cells, as well as insufficient leaf transpiration, can 
occur in plants that are subjected to 
hyperosmotic stress due to an OSCA1 
dysfunction [13]. The reduced turgor pressure in 
hyperosmotic conditions, according to structural 
analyses of OSCA1 family members in rice and 
Arabidopsis thaliana, reduces membrane 
tension, which permits the OSCA ion channels to 
open and Ca2+ to enter the cell, allowing the cell 
to respond to changes in Ph [14,15]. 
Comparisons between latent and 
hyperosmolarity-activated channels could 
provide evidence for this viewpoint. 
 

2.2 Sensing Changes in Salinity 
 
Hyperosmotic and ionic stress are present in 
plants raised in salty soils [14,16]. MOCA1 is the 
gene that encodes the enzyme that includes a 
negatively charged glucuronic acid (GlcA) to the 
plasma membrane's inositol phosphorylceramide 
(IPC) in response to Na

+
, and this enzyme has 

been discovered as a genetic cause of plants 
lacking in Na

+
-induced Ca

2+
 spikes [12,17]. A 

depolarization of the cell membrane is caused by 
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the binding of Na
+
 cations to sphingolipids 

produced by this process. This process has been 
hypothesized to be defective in moca1 mutant 
plants due to the fact that GIPC monitors 
changes in Na+ concentrations in the 
environment and generates salt-dependent 
intracellular Ca

2+
 spikes via an unknown Ca

2+ 

transporter [18]. Both the Ca
2+

-permeable 
transporters AtANN1 and AtANN4 have been 
identified as possible candidates for Ca

2+
 

transport. An electrophysiological and 
luminescent analysis of root epidermal cells 
revealed that AtANN1 is required for the 
generation of Sodium Chloride-activated Ca2+ 
influx currents in the plasma membrane of the 
cells [8,18,19]. Mutations in AtANN4, SOS2, and 
the SOS3-like Ca

2+ 
binding protein SCaBP8 alter 

A. thaliana salt stress-induced Ca
2+

 signature 
[20-23]. Phosphorylation of AtANN4 by SOS2 
and SCaBP8 forms a negative feedback loop 
that modifies the Ca

2+
 signal, resulting in 

increased Ca
2+

 uptake [7,25,26]. In order to find 
out if AtANN1 and AtANN4 have any relation to 
the MOCA1-dependent GIPC levels, further 
research is needed. 
 

2.3 Sensing Changes in Temperature 
 
It is possible that heat and cold stress will have 
an impact on the fluidity of phospholipid 
membranes. When plants are exposed to cold 
stress, their phenotypic abnormalities are caused 
by the inability of plasma membrane-localized 
Ca

2+
 channels or Ca

2+
 channel regulators to 

function properly [27,28]. This has resulted in the 
development of multiple potential cold stress 
sensors [17,29]. Membrane-localized proteins 
like the CNGC ion channels may be able to 
sense alterations in cellular membrane physical 
characteristics [24,30]. As a result, rice plants 
with loss-of-function mutations in the genes 
OsCNGC9, OsCNGC14, and OsCN16 are less 
tolerant to heat (OsCNGC14) and cold 
(OsCNGC16) stress than their nonmutated 
counterparts [31-34]. 
 
All cellular compartments can be affected by 
temperature stress, as evidenced by changes in 
protein stability and a brief increase in cytosolic 
free calcium concentration under high 
temperature conditions [22,23,35]. Under cold 
stress, the interaction of CBF transcription 
factors with PIF3, a phytochrome-interacting 
protein, helps to mitigate the loss of 
photoreceptor phyB function [15,19,32]. Because 
PhyB modulates the production of cold-sensitive 

and growth-related genes, it helps plants to be 
more resistant to freezing [36,37]. 

 
A. thaliana transcriptional repressor ELF3, which 
regulates numerous growth and development-
related genes, senses temperature changes 
[27,38]. As the temperature rises, ELF3's 
occupancy of target genes decreases, resulting 
in an increase in their expression [39]. 

 
Although both cold and heat stress can cause 
changes in cell membrane fluidity and protein 
conformation, as well as changes in RNA 
secondary structures, specialized heat shock 
proteins are able to recognize the buildup of 
denatured proteins [12,33]. Protein denaturation 
is only known to occur as a result of heat stress 
(HSPs). It is believed that these heat stress 
proteins bind to and inhibit heat stress 
transcription factors (HSF) in order to prevent the 
activation of heat-responsive genes and to 
increase the transcription of other heat stress 
proteins (HSFs) [40]. Heat stress proteins 
(HSPs) are released from denatured proteins, 
which gather and bind to one another to initiate 
heat stress responses [40,41]. 

 
Plants are able to perceive abiotic stressors not 
just at the cell surface, but also in interior regions 
like the cytoplasm or nucleus, according to the 
findings. Direct responses to intracellular 
conditions may be possible with this capability, 
as it may allow for compartment-specific 
response tailoring in response to those 
conditions. 

 
3. SIGNAL TRANSDUCTION 
 
Stress-specific signal transduction is triggered by 
the perception of unfavorable environmental 
situations. This process involves various 
combinations of second messengers such as 
Ca2+, ROS, nitric oxide and phospholipids, as 
well as post-translational modifications (PTMs) of 
proteins such as phosphorylation, 
dephosphorylation, oxidation, nitrosylation, 
sumoylation and ubiquitylation. Ubiquitination is a 
post-translational modification that occurs after 
proteins are translated. ROS and Ca2+, two of 
the second messengers, are unique in that they 
play a role in both intracellular and long-distance 
signaling. signaling proteins, such as sensors, 
receptors, and other PTMs, are regulated by 
PTMs that affect their activity, location, or 
stability. 
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3.1 Ca2+ Signaling  
 
Because they are generated by the plasma 
membrane and organellar membranes in 
response to stress, these Ca

2+ 
spikes have cell 

type- and stress-specific timing, intensity, and 
frequency characteristics; in addition, these Ca

2+
 

spikes have cytosolic and organelle-specific 
signatures in terms of timing, intensity, and 
frequency [42-45]. SOS in Arabidopsis thaliana 
recognizes a unique Ca

2+ 
signal, which results in 

the export of Na+ from root epidermal cells into 
the soil and the transfer of Na

+
 from xylem 

parenchyma cells to xylem vessels for long-
distance transmission of Na

+
 to the leaves 

[46,47]. Interacting with and activating SOS2, a 
protein belonging to the SnRK3 family of kinases, 
in the SOS pathway, which is triggered by SOS2, 
SOS3 (an EF-hand Ca

2+
 binding protein) or 

SCaBP8 is important (also known as the CIPKs) 
in plants, there are multiple SCaBP/CBL-CPIK 
complexes that have been discovered [40,48,49]. 
Complexes such as the SOS3–SOS2 module 
play critical roles in the Ca

2+ 
-mediated 

responses to diverse abiotic stressors, such as 
those requiring the modulation of ion transporter 
functions [50]. 
 

3.2 Protein Phosphorylation 
 
Phosphorylation of proteins is a critical stage in 
the transmission of signals during plant 
responses to various abiotic stress situations. A. 
thaliana and crops such as rice and maize have 
been proven to be key participants in various 
stress signaling pathways, with the type 2C 
protein phosphatase family and SnRK2 protein 
kinase subfamily being the most well-studied of 
the two [44,51,52]. In addition to the plasma 
membrane anion channel SLAC1, which 
regulates stomatal closure, transcription factors 
also regulate the plasma membrane NADPH 
oxidase RbohF, which produces extracellular 
hydrogen peroxide in the absence of a 
transcription factor (H2O2) [53]. ABA, a 
phytohormone, is responsible for the closure of 
stomata in plants in response to hyperosmotic 
stimuli such as salt, drought, and other 
environmental conditions, among others [54,55]. 
In order to limit the function of clade A P2Cs, 
such as ABI1 and ABI2, ABA receptor proteins 
(the PYR/PYL/RCAR family of tiny soluble 
proteins) connect with and physically engage 
with them [56-60]. Because of this, a number of 
SnRK2s are liberated from their inhibition by the 
PP2Cs, allowing them to function normally. 
However, ABA is not required for the activation of 

all SnRK2s [61,62]. As an example, cold stress 
activates both a SnRK2.6/OST1 and a MAP3K-
activated SnRK2 independently of either ABA or 
MAP3K, and both of these RAF-activated SnRK2 
families can then phosphorylate inactivated 
SnRK2 proteins, which in turn can enhance the 
effects of both the stress and ABA on other 
SnRK2s that have not yet been activated [63-67]. 
Ca

2+
 signaling has been linked to the SnRK3 

family, however it isn't apparent how SnRK2s are 
linked to this process. 
 

3.3 ROS Signaling 
 
During abiotic stress, plants create reactive 
oxygen species (ROS), which include superoxide 
anion (SOA), hydrogen peroxide (H2O2), hydroxyl 
radical (OH), and singlet oxygen (SO) [68-71]. 
Stress signaling pathways such as high light 
stress-induced retrograde signaling (which 
originates in the chloroplast and travels to the 
nucleus) and ABA signaling become critical when 
ROS levels exceed the capacity of the cell to 
detoxify them [72-75]. The NADPH oxidases 
RbohD and RbohF are activated by SnRK2, 
which regulates the generation of H2O2 [76,77]. 
 

3.4 Systemic Signaling 
 
Excessive light and water deprivation can lead to 
systemic acquired acclimation in plants, which is 
induced by the central nervous system's stress 
response (CNS) [78-80]. A. thaliana distal leaves 
are protected against extremely high light stress 
when systemic acquired acclimation (SAA) is 
activated, which is lethal to non-primed plants 
unless the system is primed [81,82]. Long-
distance electrical and hydraulic impulses are 
also part of systemic signaling [83]. The vascular 
bundle RbohD is required for the creation of ROS 
waves, whereas the vacuolar Ca

2+
  channel 

TPC1 is required for the formation of Ca
2+

 waves 
[84-88]. It is possible for waves of both types to 
travel at speeds in excess of one millimetre per 
second [74,89,90]. As a result of stress, ABA and 
auxin are transported from the leaves to the 
roots, where they work together to modify root 
structure and increase water uptake [66,91-93]. 
 

4. TRANSCRIPTIONAL REGULATION 
 
SOS1 transport and guard cell water loss are two 
examples of rapid adjustments that can be made 
to restore ion and water homeostasis in plants 
when stress is induced via a signal transduction 
mechanism [76,94,95]. This is in addition to the 
rapid adjustments that can be made to restore 
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homeostasis in plants when stress is induced via 
a signal transduction mechanism. Transcription 
factors connect stress-specific transcription 
patterns to upstream signaling [88,96-98]. 
 

4.1 ABA-dependent Versus ABA-
independent Responses 

 
When exposed to drought, excessive salinity, or 
cold stress, the body uses ABA signaling to 
regulate transcription of hundreds to thousands 
of genes [99-102]. Despite this, additional 
signaling pathways activate many stress-
responsive genes [103,104]. ABA-independent 
cold and drought responsive genes have a 
TACCGACAT dehydration-responsive promoter 
element (DRE), while ACGTGG/TC is commonly 
found in the promoter regions of ABA-regulated 
genes (ABRE) [105-109]. 
 

4.2 Early Versus Late Responses 
 
Stress-responsive genes that encode 
transcriptional factors respond rapidly, but the 
expression of many other genes changes later in 
the stress response and is controlled by the 
transcribing factors that respond early [110-113] 
(Fig. 1a). CBFs regulate a large number of cold-
regulated (COR) genes in Arabidopsis thaliana, 
and they are activated by cold stress by the 
transcription factors ICE1 and CAMTA [114,115]. 
It takes one to three hours for CBFs to become 
active after the onset of cold stress, but the 
expression of COR genes reaches a zenith 
within 24 hours after the onset of cold stress 
[116-119]. CBFs and COR genes are both at 
their highest levels at the same time [120]. The 
ICE1–CBF cold-sensing pathway is shared by a 
large number of plant taxa [121-123]. Under 
drought, cold, or extreme salt stress, these 
proteins in A. thaliana perform defensive tasks 
such as detoxification and synthesis of 
osmolytes, which help to protect the plant from 
further damage [124,125]. Besides having the 
effect of enhancing stress responses, 
transcriptional control has the potential to have a 
negative feedback effect [126]. 
 

5. TRANSCRIPT PROCESSING 
 
It is critical for plant stress tolerance that RNA 
processing stages including splicing and capping 
are carried out. Abiotic stress resistance is 
significantly disrupted by the malfunction of 
numerous RNA processing machinery 

components, while the plant's normal functioning 
is unaffected under stress-free conditions [127-
129]. As a result, in order to produce functional 
mature transcripts, processing machinery that is 
capable of handling the high amounts of 
transcripts generated by some stress-responsive 
genes is necessary [130-132]. 
 

5.1 Stress-induced Changes in Splicing 
 
The majority of intron-containing plant genes 
endure alternative splicing furthermore to 
constitutive splicing, particularly in exposure of 
plants to cold or salt stress [133,134]. Plant 
susceptibility to abiotic stress or ABA can be 
affected by abnormal splicing, which alters the 
synthesis of functional proteins [135-138]. 
Splicing in Arabidopsis thaliana was disrupted 
chemically by the macrolide pladienolide B (PB), 
which has been found to be sensitive to salt, 
dehydration, and ABA treatment in other plants 
[139,140] (Fig. 1b). While SnRK2 gene 
expression is unaltered, PP2C gene expression 
is disrupted, leading to decreased quantities of 
functional PP2C proteins, which in turn increases 
ABA signaling [141] (Fig. 1b). Hypersensitivity to 
ABA is caused by errors in the splicing of HAB1 
pre-mRNAs in A. thaliana, which code for the 
P2C protein of clade A [142-145]. 
 

5.2 Stress-induced Changes in 
Polyadenylation 

 

Drought, heat, and salt stress all cause 
alternative polyadenylation [146]. Abiotic stress 
alters the transcriptome of numerous genes, 
causing functional transcripts and translation 
products in sorghum to switch to nonfunctional 
status [147,148]. Alternate poly(A) sites have 
been found to be used by A. thaliana transcripts 
that are enriched for roles in ABA signaling when 
salt stress is applied [149,150] (Fig. 1c). 
 

5.3 Stress-induced Changes to 
microRNAs 

 

When plants face stressful situations, they alter 
their microRNA levels, which control the amount 
of target mRNAs by either encouraging 
degradation or translational repression [151-153]. 
MiR398 is a microRNA that inhibits the 
transcription of the Cu/Zn superoxide dismutases 
(CSD1 and CSD2), which are responsible for 
detoxifying superoxide radicals [154,155]. Many 
plants species experience miR319 induction as a 
result of salt stress [156]. 
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Fig. 1. Stress responses at the levels of transcription and transcript processing 
 

6. TRANSLATIONAL REGULATION 
 
At the ribosome level, stress-related reactions 
have been documented, including 5′-ribosome 
halting and blocking the beginning stages of the 
translation process, as well as structural 
alterations [108,157]. Heat stress causes mRNA 
degradation in Arabidopsis thaliana, which leads 
in the halt of the 5′ ribosome, which causes 
transcripts encoding targets of the HSC/HSP70 
chaperones being selectively degraded 
[158,159]. LARP1 is an RNA-binding protein that 
serves as a cofactor for the exoribonuclease 
XRN4 and aids in its ability to cleave polysomes 
in the cytoplasm [160]. According to A. thaliana 
reduced thermotolerance after being exposed to 
35°C for an extended period of time, mRNA 
degradation is required for plant adaptation and 
survival under chronic heat stress [56,161]. 
XRN4 is a transcription factor that regulates the 
mRNA degradation of HSFA2 (a crucial regulator 
of plant heat stress responses), and it is absent 
in plants [121,162]. Atxrn4 gene activity were 
better able to withstand short-term severe heat 
stress (43.5°C) than plants with Atxrn4 gene 

function [163,164]. Host protein HSP101, a 
chaperone protein that is essential for the 
release and degradation of mRNAs that have 
been degraded during heat stress, is required for 
a rapid resumption of translation once the stress 
has passed (also known as CLPB1) [134,165].  
 

7. POST-TRANSLATIONAL REGULATION 
 

Many PTMs, which regulate protein localization, 
accumulation, and/or function, are profoundly 
impacted by abiotic stress, and this has 
implications for stress response regulation 
[140,166]. Prior signaling proteins (such as 
sensors and receptors) have PTMs (including 
phosphorylation, as stated above) that allow 
them to respond immediately to stress, but It is 
possible that PTMs on freshly synthesized 
proteins as a result of stress-induced 
transcription are also essential [167]. 
 

7.1 Stress-induced Post-translational 
Modifications of Other Proteins 

 

PTMs are responsible for the regulation of a 
number of stress-resistance-enhancing non- 
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signaling proteins [168,169]. A variety of 
enzymes, including those involved in ROS 
generation and scavenging, as well as those 
involved in the manufacture of osmolytes, are 
phosphorylated by SnRK2s when they are 
triggered by osmotic stress and the ABA signal 
[170]. 
 

8. EPIGENETIC REGULATION 
 
Epigenetic markers influence the expression of 
genes associated with stress response and 
stress tolerance [141,171]. Histone modifications 
and DNA methylation are responsible for the 
structure of chromatin as well as the accessibility 
of DNA for transcriptional activity [140,172-175]. 
Many plant species have had their epigenetic 
marks altered in response to a variety of abiotic 
stress treatments, and these differences have 
been linked to the transcriptional control of genes 
implicated in plant stress responses [176]. 
 
Changes in epigenetic regulators can also cause 
stress-induced changes in plant epigenetic 
patterns [177]. Researchers believe that the 
flavor of tomato (Solanum lycopersicum) fruits 
degrades because cold treatment impedes 
transcription of the DNA demethylase gene 
DML2, allowing a rise of DNA methylation in 
genes involved in biosynthesis of aromatic 
flavors, which then causes the expression of 
those genes to be silenced, resulting in the flavor 
of tomato fruits degrading [143,178]. 
 

8.1 Erasure of Stress-induced Epigenetic 
Changes 

 

An epigenetic alteration resulting from abiotic 
stress may lead to transgenerational stress 
memory [179]. During stress recovery, however, 
mechanisms exist to reverse stress-induced 
epigenetic changes [156,180]. Epigenetic gene 
silencing in A. thaliana is mediated by two 
different proteins: the chromatin remodeling 
protein DDM1 and the DNA helicase MOM1 
[167,181]. DDM1 works through DNA 
methylation, while MOM1 does not. Plants that 
lack both MOM1 and DDM1 are not able to pass 
on heat stress-induced epigenetic silencing to 
their progeny, suggesting that both of these 
proteins are necessary to prevent stress-induced 
epigenetic inheritance [182,183]. 
 

9. IMPLICATIONS FOR CROP 
IMPROVEMENT  

 

We currently know a lot more about how plants 
respond to abiotic stress because to studies on 

the thaliana species. A. thaliana general 
principles may be applied to crops, but their 
underlying molecular details are often somewhat 
different. A. thaliana and crop gene homologues 
typically do not have a perfect one-to-one 
correspondence because of genetic variation in 
protein complexes and spatial and temporal 
expression levels [184]. This is owing to the fact 
that the vast majority of plant genes are 
organized into families. Although more 
understanding of the genes and pathways 
involved in A. thaliana is required for informative 
biotechnological agricultural production, it can 
also help in the creation and analysis of natural 
genetic variation, which may prove to be a 
valuable commodity in the future when breeding 
stress-resistant crops. 
 
The identification of the essential regulators of 
abiotic stress tolerance and spontaneous allelic 
variants in crop species has been made possible 
in recent years through the use of quantitative 
trait locus methods and genome-wide 
association analysis [185]. It is possible that the 
genes and alleles uncovered by these 
techniques will be useful for breeding crops that 
are more resistant to environmental stress while 
also producing higher yields. Several HKT1 
alleles in rice, wheat (Triticum aestivum), and 
maize (Zea mays) have been identified as critical 
quantitative trait loci regulating plant salt 
tolerance, paving the way for marker-assisted 
breeding of wheat to produce higher yields in 
salinity-saturated soil [186]. 
 

9.1 Genetic Engineering of Stress-
Resilient Plants 

 
Through the use of genetic engineering 
techniques, it is feasible to develop stress-
resilient plants by altering the expression or 
activity of critical regulators associated with 
stress responses [139,187]. Although regulators 
at any level of the molecular response can be 
altered, protein kinases, and other signaling 
factors, transcription factors, metabolic enzymes, 
as well as ion transporters, have shown to be the 
most successful targets for genetic alteration 
[188]. Plants grown in transgenic rice that 
express the stress-inducible gene OsDREB2A 
showed higher tolerance to dehydration stress 
than plants produced in transgenic rice that did 
not express the gene [154,189]. Stress 
circumstances frequently result in an excess of 
the lethal metabolite methylglyoxal being 
produced in the body (MG) [98,190]. Abiotic 
stressors such as high salt concentrations, dry 
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conditions, and high temperatures were made 
tolerable by increasing the expression of genes 
related with the glyoxalase pathway for MG 
detoxification in Oryza species [191]. Through 
the use of a short tandem target mimic method to 
knock down miR166 in rice, researchers were 
able to induce increased drought tolerance and 
developmental alterations that were similar to 
natural plant responses to water scarcity stress 
[67,192]. In order to develop alleles with 
increased or decreased stress response 
expression, it is possible to incorporate 
transcriptional or translational regulatory 
sequences into key stress response genes. This 
technique is particularly useful for both research 
and breeding because it allows for the 
development of alleles with increased or 
decreased stress response expression. 
 

9.2 Increasing Stress Resilience without 
Sacrificing Growth 

 

There is a strong relationship between plant 
stress responses and other key biological 
processes, particularly growth-related pathways 
in plants. Due to the negative side effect of 
reduced growth, increased crop stress resistance 
is often accompanied with a fall in yields [193]. 
Through the expression of stress tolerance 
genes, stress-inducible promoters can help to 
reduce these growth and yield penalties. Better 
frost tolerance was seen in transgenic wheat and 
barley (Hordeum vulgare) that had constitutive 
overexpression of TaDREB2 and TaDREB3, but 
growth and blooming were significantly delayed 
[194]. Drought-inducible promoters induced the 
expression of TaDREB2 and TaDREB3 in 
transgenic wheat and barley plants, resulting in 
increased drought survival [195]. However, when 
the plants were not stressed, no abnormal 
growth was seen. In a similar vein, drought-
induced Oshox24 promoter-controlled 
overexpression of the transcription factor gene 
OsNAC6 boosted rice tolerance to dehydration 
and severe saline stress without producing 
growth retardation or low grain production in the 
field [196]. Stress reactions and plant 
development have an antagonistic relationship, 
as demonstrated by the reciprocal regulation of 
PYL proteins and the TOR kinase. This means 
that the two processes are in a state of well-
regulated equilibrium with one another [125,197]. 
 

9.3 Chemical Intervention to Protect 
Plants from Abiotic Stress  

       

Small-molecule chemical compounds that modify 
the activity of molecular components in plant 

stress response networks have the potential to 
control these networks. In the field, ABA 
therapies are not frequently employed due to the 
high cost and chemical instability of the 
treatments, despite the fact that they have the 
ability to protect plants from a wide range of 
abiotic hazards. The identification of ABA 
receptors and the architecture of these receptors 
has aided in the development of ABA mimics 
[198]. Researchers are investigating the effects 
of these small molecules, which are capable of 
binding to ABA receptors while also triggering 
stomatal closure and increasing the synthesis of 
stress-responsive genes [199,200]. 
 

10. CONCLUSION AND FUTURE 
PROSPECTS 

 

Scientists are still confused by plant molecular 
responses to abiotic stress, particularly in the 
areas of stress detection, early signaling, 
translational and post-translational control, and 
growth regulation, among other areas. These 
presumptuous stress sensors are likely to be 
many, but their physiological roles and 
biochemical detection procedures remain 
unclear, therefore they can only be referred to as 
presumptive stress sensors. 
 

The majority of known stress signaling pathways 
have not been linked to stress sensors, crosstalk 
across signaling pathways is not fully 
understood, and signaling networks are still in 
the process of being established. The application 
of numerous distinct omics approaches has 
significantly enhanced our current understanding 
of molecular genetics. Because of genetic 
redundancy and lethality, as well as a limited 
ability to analyse biologically huge amounts of 
data, unravelling plant stress response pathways 
and regulatory networks presents significant 
obstacles. 
 

Given our limited understanding of plant stress 
responses, it is possible that even a combination 
of genetic and pharmacological techniques will 
not be sufficient to protect plants against stress 
in the field. Microbes may be able to provide a 
solution to this dilemma. The rhizosphere is a 
microenvironment where plants and soil 
microorganisms dwell. It is the makeup of the 
root microbiota that is highly influenced by a 
plant's genotype and environmental stressors, 
and it is at this point that root exudates play an 
important role [201]. 
 

Several different abiotic stresses are applied to 
plants at the same time in their natural 
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environment, thus it is critical to understand how 
different types of stress affect the body's 
response system in different ways. Plant 
responses to biotic and abiotic stimuli such as 
ROS generation and stomatal closure are two 
examples of plant responses that may converge 
at certain regulatory nodes in response to biotic 
and abiotic stimuli. This interplay of reactions and 
their cross-talk has the potential to have either 
synergistic or antagonistic effects, resulting in 
either increased or decreased stress levels 
resistance. It will be necessary to discover the 
molecular mechanisms by which plants respond 
to a wide range of environmental stresses in 
order to generate stress-resistant crops in the 
field. 
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