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Abstract 

 
A recent result shows that a LP model with 0/1  values is of polynomial complexity. 

The paper  reports a   model for  some important NP hard  problems, such as the Propositional Satisfiability 

Problem, the Traveling  Salesperson Problem, and the  Minimal Set Covering Problem, by means of only 

two types of  constraints: 'choice constraints'and 'exclusion constraints'. 

The article  presents a linear  0/1  Simplex for solving the obtained  integer program.  This algorithm always  

finds a 0-1 integer solution that corresponds to a solution of the Constraint Satisfaction Problem and vice 

versa. 

The paper presents the results of experiments  for solving a Conjunctive Normal Form hard cases by linear 

programming in polynomial time, confirming in practice the polynomial   Acceleration of the Simplex SAT 

solver by means of intelligent pivot selection through neural networks is also decribed. 

There are several practical application of our approach: Agriculture production planning; Industry 

manifacturing and service; Engineering; Financial management; and, of course, transportation. 

Original Research Article 
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1 Introduction 
 

The Boolean satisfiabilty problem (SAT) is the problem of determining if there exists an interpretation that 

satisfies  a Boolean formula, it asks wheter the variables can receive True or False in such a way the formula 

evaluates to True. See [1-3]. 

 

As shown by [4], the propositional satisfiability problem (SAT) plays a crucial role in the real world and in the 

field of Artificial Intelligence and Operations Research: it is the core of FCSPs. 

 

We describe a novel approach to m-CNF-SAT and to other FCSPs: LP Sover with (0/1) Matrix. 

 

This is a strongly polynomial algorithm. See  [5] and [6].  A first presentation of our approach can be found in [7]. 

See  [8-11] too. 

 

1.1 Related work 
 

Modern optimization began with George Dantzig's development of the Simplex algorithm (1947) for Linear 

Programming. 

 

However, the worst case complexity of the Simplex algorithm is exponential, even if the Simplex typically 

requires a low-order polynomial number of steps to compute an optimal solution. 

 

Recently, Khachian's Ellipsoid algorithm [12] and Karmarkar's Projective Scaling Algorithm [13], have been 

introduced that are provably polynomial. 

 

For a recent book on optimization and linear programming, see  [14] and [15]. 

 

Gael Glorian, Jean-Marie Lagniez, Valentin Montmiral, and Nicolas Szczepaski in [16] propose and                                  

evaluate a new CNF  encoding  based on chromatic number of a graph. Graph colouring is the problem of  

assigning a minimum number of colors to all verices of a graph such that no adjacent vertices receive the same 

color. 

 

Keum-Bae Cho (Academia.org) gives an analysis for SAT problems and a classification: random SAT almost esay, 

Horn-SAT solvable in polynomial time; k-SAt with k>2 is NP complete.  The well known programming language 

called Prolog (Programming in Logic) is based on Horn clauses. 

 

As an example of Horn clause, consider: 

 

(a + b + C).(b + c + D).(A + c + d) 

 

where + means OR the dot means AND, lower case negated literal, upper case non-nagated. 

 

Execution of a Prolog program is initiated by the user's posting of a single goal, called the query. Logically, the 

Prolog engine tries to find aresolution / refutation of the negated query. The resolution method used by Prolog is 

called SLD (Selected Linear resolution withDefinite clauses) . If the negated query can be refuted, it follows that 

the query, with the appropriate variable bindings in place, is a logical consequence of the program. In that case, 

all generated variable bindings are reported to the user, and the query is said to have succeeded. 

 

SLD proceedes as follows: 

 

Given a goal clause, represented as the negation of a problem to be resolved: 

 

~L1 + … + Ln 
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and an input definite clause 

 

L + … 

 

whose positive literal unifies with Li, SLD derives another goal clause, in which the selected literal is                      

replaced by the negative literlas of the input clause. Resolution can be restricted to a linear sequence of            

clauses: 

 

C1,C2,...,Ci. 

 

Prolog power derives from the unification mechanism, which combines matvhing of variables and              

instantiation. 

 

For Constraint Satisfaction in Prolog see [17] a seminal paper which describes an algorithm for a NP hard problem, 

Timetabling, implemented in Prolog language. The paper had a great impact in the Logic Programming 

community. 

 

 

Angione C., A. Occhipinti, G. Stracquadanio, G. Nicosia [AOSN, arXiv 1304.0810] present a statistical physics 

based characterization of the satisfiability proble. They quote our approach of [7]. 

 

[AOSN] describe an algorithm that produces graphs starting from SAT and analyzes  wheter Bose-Einstein 

condensation occurs. SAT instances follow Bose  statistics and winner-takes-all as the ratio of clauses   to variables 

decreases. We also noted the same for our LP solver.Finally, [AOSN] employ fitness  based  classification to 

enhance SAT solvers such as ChainSAT. Chain approach to SAT constructs a chain of variables where each 

variable is dependent on a previous one. First, SAT problem is traslated to a graph where the vertices  are the 

clauses and the edges the relation between two clauses.  This is smilar to our representation. 

 

Wahid Chrabakh and Rich Wolski, University of California Santa Barbara (Academia.edu) present ,  a parallel 

SAT solver with intelligent backtracking , scheduling sharing of leaned clauses and clause reduction. 

  

For the approach illustrated in the present  paper, see also [19], [20] and [21], [7] and [22], [27-44]. 

 

Our LP problem has a Matrix (and b e c vectors) with 0/1 values. This has strongly polynomial algorithms. See 

[6],  [5]. 

 

We summarize the Tardos' method: 

 

Th. There exists an algorithm which soles a given  rational LP in polynomial space 

 

Th. There exists  a strongly polynomial time agorithm for LP with 0-1 conytaint matrix. 

 

2 The Satisfaction of a Conjunctive Normal Form (m-CNF-SAT) 
 

We  report here in italics from [7] under certified permission. 
 

Now let us consider the Satisfaction of a Conjunctive Normal Form in propositional calculus. This problem is 

considered a NP problem (NP-complete as decision problem and NP-hard as solution when there are more than 

2 literals  for each clause). 

 

In formal terms the problem is: 

 

-Given a Conjunctive Normal Form, find an assignment for all literals (also called variables) that satisfies 

(i.e. renders true) the conjunction. Obviously, the entire form is true if and only if all clause are true (i.e. 

satisfied). A clause is true if one of its literals is true. A literal can negated or not. The variable corresponding 

to a non-negated literal is true if the variable is assigned the value true and the value false for a negated 

literal. 
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An example of CNF (example 1) is: 

 

(A + B).(C + D).(~B + ~C).(~A + ~D), 

 

where + means OR, . AND, ~ NOT, (A + B), (C + D), (~B + ~C) and (~A + ~D) are the clauses, A and B are the 

literals for the first clause, etc. 

 

A possible assignment that renders the form true is A = true, B = false, C = true, D = false. 

 

We name v1, v2, etc. each clause (A + B), (C + D), etc. 

 

-each clause must be satisfied: since a clause is a logical OR, it is sufficient for instance that A or B is true. 

Thus each clause vi must havean assignment among the available alternatives (i.e. the literals in that clause 

that are also called 'variables' because can receive a value of true or false) 

 

-we use upper case letters for non-negated alternatives and lower case letters for negated alternatives.We 

justify this unconventional notation (b instead of ~B): we use the lower case for negated literals because we 

can use only one character for both negated and non negated literals. This fact simplified the computer 

programs that we used for solving the problems. 

 

So we achieve: 

 

v1: A, B 

v2: C, D 

v3: b, c 

v4: a, d. 

 

Of course, the choice of A (i.e. A = true) to satisfy the clause 1, does not permit the choice of NOT A that is the 

alternative a (i.e. A = false), for the clause 4. We cannot made incompatible choice. 

 

For example, the following choice of literals to satisfy the clauses: 

 

v1: A 

v2: C 

v3: b 

v4: d 

 

leads to: 

 

A = true, C = true, B = false , D = false (because we have chosen the negated form of B and D). 

 

There may be cases where the choices let undetermined some letter. In this case, both the assignments true and 

false are acceptable for that literal. 

 

2.1 Conjunctive normal form satisfaction, integer and linear programming 
 

We will show how to transform a m-CNF-SAT problem in an Integer Programming 

problem of the form 

 

min cx 

Ax = b, x > = 0, x integer, 

 

with A integer matrix, b, c integer vectors. Moreover, all elements of A, b, c are 0 or 1. The solution of the integer 

LP problem is a valid solution of the CNF-SAT problem. 

 

In [23] taxonomy, the problem is represented as: 
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Our LP problem has a Matrix (and b e c vectors) with 0/1 values. This has strongly polynomial algorithms. See 

[6]. 

 

The solution of LP program is integer. [24] reports the fundamental theorem: 
 

If a rational constraint system (Ax >=b, x>=0) is total dual integer and if the vector b in integer, all extreme points 

solutions are integer. This is our case. For the complete proof see  [7]. 
 

Note that this is one of the reasons why the present approach is so generally applicable: this constraint is not 

problem specific, it forces us to give an equal opportunity to each part of the problem data to be considered. 

 

-(e) constraints which ensure that each pair literal such as A and a, B and b, etc. (i.e. non negated and negated 

forms) are mutual exclusive, that is at most one of two is 1. We call these constraints exclusion constraints. 

 

Consider now an example  with p=m=n=3. If we re-order the alternatives, we find: 

 

A a B b C c 

 

v1 y11 y12 y13 y14 y15 y16 

v2 y21 y22 y23 y24 y25 y26 

v3 y31 y32 y33 y34 y35 y36 

 

Consider the following instance of the 3-variables case: 

 

v1: A, B, C 

v2: A, b 

v3: a 

 

the c row vector is: 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 000000000000000000 

 

After a suitable Simplex procedure (i.e. with Pivot-operations for a suitable element in the first 3 rows), we obtain  

for the non-basis variables the zero-values, and for the  basis variables: 

 

x5=1, x10=1, x14=1 (non slack) => v1: C, v2: b, v3: a => A=B= false, C= true 

 

v1: c; v2: a; v3: b. 

 

Example 3: 

 

4 original boolean variable, 3 clauses: 

 

v1: A, B, C, D 

v2: b, c, d 

v3: a, B 

 

Maximize p = x11 + x13 + x15 + x17 + x24 + x26 + x 28 + x32  subject to 

 

x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 = 1 

 

x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 = 1 

 

x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 = 1 

 

x11 + x22 <= 1 

 

x12 + x21 <= 1 

x13 + x24 <= 1 
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x14 + x23 <= 1 

x15 + x26 <= 1 

x16 + x25 <= 1 

x17 + x28 <= 1 

x18 + x27 <= 1 

 

x11 + x32 <= 1 

x12 + x31 <= 1 

x13 + x34 <= 1 

x14 + x33 <= 1 

x15 + x36 <= 1 

x16 + x35 <= 1 

x17 + x38 <= 1 

x18 + x37 <= 1 

 

x21 + x32 <= 1 

x22 + x31 <= 1 

x23 + x34 <= 1 

x24 + x33 <= 1 

x25 + x36 <= 1 

x26 + x35 <= 1 

x27 + x38 <= 1 

x28 + x37 <= 1 

 

Example 5: 

 

v1: A, B, C, D 

v2: a,b,c 

v3: d 

 

Maximize p = x11 + x13 + x15 + x17 + x24 + x26 + x 28 + x38  subject to 

 

x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 = 1 

 

x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 = 1 

 

x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 = 1 

 

x11 + x22 <= 1 

 

x12 + x21 <= 1 

x13 + x24 <= 1 

x14 + x23 <= 1 

x15 + x26 <= 1 

x16 + x25 <= 1 

x17 + x28 <= 1 

x18 + x27 <= 1 

 

x11 + x32 <= 1 

x12 + x31 <= 1 

x13 + x34 <= 1 

x14 + x33 <= 1 

x15 + x36 <= 1 

x16 + x35 <= 1 

x17 + x38 <= 1 

x18 + x37 <= 1 

x21 + x32 <= 1 
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x22 + x31 <= 1 

x23 + x34 <= 1 

x24 + x33 <= 1 

x25 + x36 <= 1 

x26 + x35 <= 1 

x27 + x38 <= 1 

x28 + x37 <= 1 

 

Solution: v1 (first clause) B; v2 (second clause) a; v3 (last clause) d 

 

See the solution by ZweigMedia LLC free Simplex Solver. 

 

Now consider the example 6 

 

v1: A, B, C, D 

v2: a,b,c 

v3: D 

 

Maximize p = x11 + x13 + x15 + x17 + x24 + x26 + x 28 + x37  subject to 

 

x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 = 1 

 

x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 = 1 

 

x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 = 1 

 

x11 + x22 <= 1 

 

x12 + x21 <= 1 

x13 + x24 <= 1 

x14 + x23 <= 1 

x15 + x26 <= 1 

x16 + x25 <= 1 

x17 + x28 <= 1 

x18 + x27 <= 1 

 

x11 + x32 <= 1 

x12 + x31 <= 1 

x13 + x34 <= 1 

x14 + x33 <= 1 

x15 + x36 <= 1 

x16 + x35 <= 1 

x17 + x38 <= 1 

x18 + x37 <= 1 

 

x21 + x32 <= 1 

x22 + x31 <= 1 

x23 + x34 <= 1 

x24 + x33 <= 1 

x25 + x36 <= 1 

x26 + x35 <= 1 

x27 + x38 <= 1 

x28 + x37 <= 1 

 

As one can see, the matrix A is the same, only the vector c is modified. This is the great advantage for our method.
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Fig. 1. Linear programming 
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Table 1. Programme 1 

 

 
Source: This table available in this link: https://journalarjom.com/media/2024_ARJOM_116953_Table-1.pdf 
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Table 2. Programme 2 

 

 
Source: This table available in this link: https://journalarjom.com/media/2024_ARJOM_116953_Table-2.pdf 
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Table 3. Programme 3 
 

 
Source: This table available in this link: https://journalarjom.com/media/2024_ARJOM_116953_Table-3..pdf 
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Table 4. Programme 4 

 

 
Source: This table available in this link: https://journalarjom.com/media/2024_ARJOM_116953_Table-4..pdf 
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Note that it was not requred an integer solution by means of an integer solver but the  standard simplex always 

finds integer solutions. See [7] for the proof. 
 

Now consider the example 7 
 

v1: D 

 

v2: a,b,c 

 

v3: d 

 

Example 7 

 

Maximize p = x18 + x24 + x26 + x 28 + x37  subject to 
 

x11 + x12 + x13 + x14 + x15 + x16 + x17 + x18 = 1 
 

x21 + x22 + x23 + x24 + x25 + x26 + x27 + x28 = 1 

 

x31 + x32 + x33 + x34 + x35 + x36 + x37 + x38 = 1 
 

x11 + x22 <= 1 
 

x12 + x21 <= 1 
 

x13 + x24 <= 1 
 

x14 + x23 <= 1 
 

x15 + x26 <= 1 
 

x16 + x25 <= 1 
 

x17 + x28 <= 1 
 

x18 + x27 <= 1 
 

x11 + x32 <= 1 
 

x12 + x31 <= 1 
 

x13 + x34 <= 1 
 

x14 + x33 <= 1 
 

x15 + x36 <= 1 
 

x16 + x35 <= 1 

x17 + x38 <= 1 

x18 + x37 <= 1 
 

x21 + x32 <= 1 
 

x22 + x31 <= 1 
 

x23 + x34 <= 1 
 

x24 + x33 <= 1 
 

x25 + x36 <= 1 
 

x26 + x35 <= 1 
 

x27 + x38 <= 1 
 

x28 + x37 <= 1 

 

that is infeasible. 
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Fig. 2. Linear programme 1 

 

Our solver finds a partial solution (maximum SAT). 

 

Table 5. Brief summary of tests 

 

Variables Constraints Iterations for the Simplex 

12 6 5 CNFSAT2 2 booleans,  2^2 = 4 alternatives 
18 21 8 CNFSAT3 (NP) 3 boolleans, 8  

24 27 10 CNFSAT4   (NP) 4 booleans 16  

120 783 40 CNFSAT20 (NP) 20 booleans  2^20  = 1048576   
180 16113 60 CNFSAT30 (NP) 30 booleans      1073741824 

etc.  

 

In general, for our experiments (1000  done), the number of iterations grows linearly with the number of  input 

data. 

 

The Rutgers University' Center for Discrete  Mathematics (DIMACS) maintained a data base  of very hard SAT 

problems and a problem generator, we used for our tests. For a detailed report on experimental data, see  [7]. 

 

2.2 Algorithm Cost 
 

The worst case cost in the dimensions [p * n] of the original CNF-SAT problem is 

 

number of columns: p * 2 * n + 2 * n * p * (p - 1) / 2 

number of rows : p + 2 * n * p * (p - 1) / 2. 

 

If m=n=p, we have: 

c = n 3 + n 2 

r = n 3 - n 2 + n 

 

giving a cubic Worst Case Cost. 
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2.3 Acceerating the solution by means of intelligent pivot election 
 

We have tested  Artificial Neural Networks that learn to choose the position of pivot  operation in the Simplex in 

order to reduce the number of iterations. The first approach is described in [8]. 

 

We considered several neural networks paradigms. The best result was achieved  with Functional-Link Fast 

Backpropagation Network (FL-F-BKP) with 2 * n2 elements in the hidden layer. 
 

The functional-link network FLN) is a feedforward network that uses  backpropagation algorithm.We used  the 

outer product tensor model variant. 

 

Architecture for FLN: 

 

Input layer. 2 *  n2  PEs (processing elements) 
 

Output layer: 2 * n2  Pes. 
 

We implemted our networs in Python augmented through NumPy, SciPy, scikit-lear, Mathplothlib and pandas 

libraries [11]. 

 

Table 6. Brief summary of tests: average speed up: 

 

Variables Constraints Iterations for the Simplex 

24 27 8 CNFSAT4   (NP) 4 booleans 16  alternatives 

120 783 30 CNFSAT20 (NP) 20 booleans  2^20  = 1048576   
180 16113 50 CNFSAT30 (NP) 30 booleans      1073741824 

etc. 

 

2.4 Other neural network approaches 
 

Chen and Liu [25] describes   a novel neural network approach for constraint optimization that uses a Neural 

Optimization Machine (NOM) . 

 

Khandoker  et al,. [26] presents  a variant of a recurrent neural network (RNN)  with variational classical annealing 

(VCA)- 

 

3 The Traveling Salesperson Problem (TSP) 
 

We report here from [7]   the same approach of the previous sections to solve the famous  Traveling Salesperson 

Problem (TSP), by means of Linear Programming. 

 

We have  been choosing  a problem apparently very different from m-CNF-SAT to show that a very uniform 

modelling technique can be successfully used. 

 

The well known TSP is that of a salesperson which has a list of pcities, each of which he must visit exactly once. 

There are direct roads between each pair of cities on the list. We must find the route the salesperson should  follow 

so that he travels the shortes possible distance on a round trip,  starting at any one of the cities and then returning 

there: the problem is in fact NP-hard.   

 

In graph theory, a Hamiltonian circuit in a graph is a closed walk that visit each vertex exactly once and is the 

model for TSP. Deciding  whether or not a graph has a Hamitonian circuit is an NP complete  problem, capturing 

much of the complexity of the general TSP. 

 

There is an important connection between traveling and map coloring: the boundaries of a map's regions  are the 

edges of a graph, with the intersection points as vertices. 

 

The dual of Hamiltonian circuit is Euler circuit: travel each edge exactly once. However this problem is well 
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solved,  it is of P class of complexity. Euler circuit  can be the model of Shared Resource Allocation, see [7]. 

 

CNFSAT problem can be modelled as an Euler circuit but in hypergraphs, and this has NP complexity. A 

hypergraph has and edge connecting more than two vertices unlike a graph. 

 

The TSP has several applications such as planning, logistics, microchips factory, DNA sequencing, astronomy, 

optimal control. 

 

The constraints: 

 

c') multiple choice constraints which ensure that exactly one of several costs is chosen at any step; there are p 

constraints for p cities. 

 

c'') constraints that ensure at most one 1-value for each column is present, i.e. a cost is chosen at most one time 

for the entire route. 

 

There are p2 - p constraints. 

 

e) constraints that ensure the salesperson not to return to the start-city before the entire route is completed and 

ensure continuity (if we choose c12, we can not then choose c3...), See [7]. 
 

4 Proof for our CNF-SAT solver 
 

Complete proof of Corretcness and Completeness  for our LP solver can be found in [7]. 

 

5 Conclusions 
 

The recent result of [6]  renders very important our approach and solver for CNFSAT and other NP hard problems 

[7]. Our LP Simplex solver  for CNF-SAT (NP-complete) and other NP hard problems, has a Matrix (and b e c 

vectors) with 0/1 values. This has strongly polynomial algorithms. See [6]. We tested our LP Sover  with hard 

cases of  problems, and reported the experimental results. Thus the present paper demonstrates in practice the 

claim of [6]. 

 

For other Constraint Satisfaction Problems see  [19], [7]. 
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