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1 Introduction
In this introductory section we will sketch in a light form, that is, brief and informally, what we shall do in this
paper.

Let A = (A0, A1) and B = (B0, B1) be two interpolation pairs of Banach spaces and let T : A → B be an
interpolation operator; the Lions-Peetre method of interpolation for couples possesses a remarkable property
from the geometric point of view: for certain operator ideals I, the interpolated operator Tθ,p : Aθ,p → Bθ,p
between the corresponding interpolation spaces belongs to one of those operator ideals if and only if the operator
TJS : J (A)→ S(B), from the intersection space J (A) into the sum space S(B) belongs to that ideal. In [1] this
property (here called the Beauzamy property of interpolation) was expressed by saying that the ideal I satisfies
the 8strong property of interpolation′ with respect to the real method of Lions-Peetre.

Let A = (A0, A1 . . . , An) and B = (B0, B1 . . . , Bn) be two finite families of interpolation and T : A → B
be an interpolation operator; let J(A) and K(B) be the interpolation spaces obtained from A and B by the
J and K real methods of interpolation for finite families of Sparr [2] for example. It was proved in [3], for the
J and K methods of Sparr and other J and K methods of interpolation, that for certain operator ideals I the
interpolated operator TJK : J(A) → K(B) from J(A) into the corresponding K(B) belongs to I if and only if
the operator TJS : J (A) → S(B) from the intersection space into the sum space belongs to I; in other words,
in that written (or rather, in that rough draft) it was proved for each one of the operator ideals I considered
there that TJK ∈ I if and only if TJS ∈ I, see [[3], Theorem 5.2]. On the basis of this fact, we propose here
a real method of interpolation for finite families that provides us with the interpolation spaces JK(A), JK(B)
and with respect to which the operator ideals I considered here possess the so called in this paper Beauzamy
property of interpolation i.e., the property that the interpolated operator TJK : JK(A)→ JK(B) belongs to I
if and only if the operator TJS from the intersection J (A) into the sum space S(B) belongs to I. We call this
method the JK-method of interpolation.

Our preferred model through all the paper will be the JK-method related to Sparr [2] (in this case we obtain an
exact interpolation functor of type tθ), but our results applies equally well to the J and K methods of Fernández
[4] and Cobos-Peetre [5]. The JK-method of Sparr here described plays, for finite families, the same role as
that of the Lions-Peetre method for pairs.

It was the much admired mathematician, Professor Bernard Beauzamy, who by the end of 70’s proved the fact
that the geometric character of the Lions-Peetre interpolation spaces Aθ,p = (A0, A1)θ,p for 0 < θ < 1 and 1 <
p <∞, depends on the geometric character of the injection i : J (A)→ S(A), in the sense that Aθ,p is reflexive,
has no isomorphic copy of `1 or is separable if and only if the injection i is weakly compact, a Rosenthal operator
or a separable operator. What we call here the Beauzamy property of interpolation is precisely this fact: the
geometric character of the interpolated operators depends on the geometric character of TJS : J (A) → S(B).
The significance of this fact is very clear. In Professor Beauzamy’s own words:

Pour les espaces d’interpolation A = (A0, A1)θ,p (0 < θ < 1, 1 < p < ∞) la réflexivité et la p´résence de sous-
espaces isomorphes à `1 peuvent être complètement décrites par des propiétés de l’injection i, de J = A0 ∩ A1

dans S = A0 + A1. Cette caractérisation est évidemment optimale, en ce sens qu’elle ne fait pas intervenir les
espaces intermédiaires, mais seulement A0 et A1 eux-mêmes. Les théorèmes qui suivent. . . see [[6], page 40].

It should be emphasized the great influence that the historical and celebrated paper from 1974 of Davis-Figiel-
Johnson-Pełczyński [7], on factorization of weakly compact operators, had in the study initiated by Beauzamy
of the geometric properties of the interpolation spaces obtained by the real method for pairs of Lions-Peetre.

In the next section, we present and study formally the JK-method of interpolation. Our main results are
Theorem 3.2 and Theorem 3.3, at the end of the paper.
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The organization of the paper is as follows: in Section 2, we review some concepts on the real method of
interpolation, basic facts about the various methods of interpolation for finite families with which we shall deal
and basic facts on the geometry of Banach spaces and operators between them. In Section 3 we present and
study the JK-method.

To better understand why the JK-method here proposed, just compare Lemma 3.1 with the main result of
the paper, i.e., with Theorem 3.2: in Lemma 3.1 the results are presented in terms of two different methods
of interpolation, the J -method on the one hand and the K-method on the other; in Theorem 3.2, they are
presented in terms of a unique method of interpolation, the mixed and unifying JK-method.

The notation is standard. Any undefined term, concept or unproven fact will be found in the excellent books of
Johnson-Lindenstrauss [8] and Pietsch [9].

The reader is invited to review that paper from 1995: ’Interpolating several classes of operators’, [1]. It is
available on line and will soon be published in this same journal.

This paper is dedicated to the memory of my dear father Bernardo.

2 Preliminaries

2.1 The J and K real methods of interpolation for finite families of Banach
spaces

Beside the Lions-Peetre Real Method of interpolation for pairs of Banach spaces we are concerned here with three
real methods of interpolation for finite families of Banach spaces. They are, in chronological order, the Sparr
Method for (n+1)-tuples, see [2], the Fernández Method for 2d Banach spaces, see [4] and the Cobos-Peetre
Method, see [5]. In all of them, both, the J and K-functionals are defined by introducing a positive weight
factor ω, a tuple of positive real numbers, in the norms of the sum and intersection spaces, being ω chosen in a
different way for each method.

Now, see [10], let D denote the unit disk, D = {z ∈ C : |z| < 1} and Γ its boundary. The family A = {A(γ) :
γ ∈ Γ ;A,U} is a complex interpolation family (i.f.) on Γ with U as the containing space and A as the log-
intersection space if

(a) for each γ, the complex Banach spaces A(γ) are continuously embedded in U ; ‖·‖γ is the norm on A(γ) and ‖·
‖U that on U ;
(b) for every a ∈ ∩γ∈ΓA(γ) the application γ → ‖a‖γ is a measurable function on Γ ;
(c) A is the log-intersection linear space

A = {a ∈ A(γ) for a.e. γ ∈ Γ :

∫
Γ

log+ ‖a‖γdγ <∞}

with log+ = max(log, 0), and there exists a measurable function P on Γ such that
∫

Γ
log+ P (γ)dγ <∞ and ‖a‖U ≤

P (γ)‖a‖γ for a.e. γ, (a ∈ A).

Let L be the multiplicative group

L = {α : Γ → R+;α is measurable with logα ∈ L1(Γ )}
and G be the space of all A-valued, simple and measurable functions on Γ . The space G is that of all Bochner
integrable (in U) functions a(·) such that a(γ) ∈ A(γ) for a.e. γ ∈ Γ and that a(·) can be a.e. approximated in
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the A(γ)-norm by a sequence of functions from G.

For α ∈ L and a ∈ U with a =
∫

Γ
a(γ)dγ, define the K-functional with respect to the i.f. A by:

K(α, a) = inf{
∫

Γ

α(γ)‖a(γ)‖γdγ},

where the infimum is taken over all representations a =
∫

Γ
a(γ)dγ (convergence in U), with a(·) ∈ G. For a ∈ A

define the J-functional by

J(α, a) = ess supγ∈Γ (α(γ)‖a‖γ).

We specialize to the case of finite families. Let A = (A0, A1 . . . , An) be an (n+1)-tuple of Banach spaces Ai
continuously embedded into a Hausdorff topological vector space H; do A = J (A) = ∩Ai the intersection space
and U = S(A)=

∑
Ai the sum space with the usual norms; we shall assume that the intersection space is dense

in each Ai. Let {Γ0 ,Γ1 , . . . ,Γn} be a partition of Γ ; take A(γ) = Ai for γ ∈ Γi and P (γ) ≡ 1 for the measurable
function P on Γ in c) of the definition of i.f.. Thus, we have the (n+1)-tuple A = {A(γ)|A(γ) = Ai for γ ∈
Γi , i = 0, 1, . . . , n;A,U} over the partition {Γ0 ,Γ1 , . . . ,Γn} of Γ .

Definition 2.1. Let A = {A(γ)|A(γ) = Ai for γ ∈ Γi , i = 0, 1, . . . , n;A,U} and B = {B(γ)|B(γ) = Bi for γ ∈
Γi , i = 0, 1, . . . , n;B,V} be two (n+1)-tuples over the same partition {Γ0 , Γ1 , . . . ,Γn} of Γ . An operator
T : A→ B is a bounded interpolation operator if T : U → V is a bounded linear operator and Tγ : A(γ)→ B(γ)
is bounded for each γ. Set σ(T ) = supγ∈Γ ‖Tγ‖A(γ)→B(γ).

For α ∈ L and z ∈ D, define

α(z) = exp(

∫
Γ

logα(γ)Pz(γ)dγ),

where Pz is the Poisson kernel at z ∈ D, see [11].

Let A be an (n+1)-tuple, S ⊂ L a subgroup of L (such as those considered in 2.2), z0 ∈ D and 1 ≤ p ≤ ∞ or
p = c0. Define the K-space, [A]Sz0,p (in square brackets), as that of all a ∈ U for which(

K(α, a)

α(z0)

)
α∈S
∈ `p(S),

endowed with the norm

‖a‖[A]Sz0,p
=

(∑
α∈S

(
K(α, a)

α(z0)

)p) 1
p

;

as always for p =∞ and p = c0.

Define the J-space, (A)Sz0,p (in parentheses, round brackets), as that of all a ∈ U for which there exists a map
(u(α))α∈S from S into A such that a =

∑
α∈S u(α) (convergence in the U norm) and(
J(α, u(α))

α(z0)

)
α∈S
∈ `p(S),

endowed with the norm

‖a‖(A)Sz0,p
= inf

(∑
α∈S

(
J(α, u(α))

α(z0)

)p) 1
p

,

where the infimum extends over all representations of a.
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2.2 Some examples
Suppose that J (A) is dense in every Ai. In each of the coming examples chose for the subgroup S of L the
following:

(2.2.1) Let A = (A0, A1); take A(γ) = Ai for γ ∈ Γi , i=0,1, with {Γ0 ,Γ1} a partition of Γ . Do S = SLP with

SLP = {αm = 1Γ0 + 2m1Γ1 ;m ∈ Z} ' Z,

to get that [A]
SLP
z0,p =(A0, A1)|Γ1 |z0

,p = Kθ,p(A): the K-space of Lions-Peetre with θ = |Γ1 |z0 , where |E|z is the
harmonic measure of E ⊂ Γ at z ∈ D , see [12]. Here ' means ’algebraically isomorphic to’.

(2.2.2) Let A = (A0, A1 . . . , An) be an (n+1)-tuple over the partition {Γ0 ,Γ1 , . . . ,Γn} of Γ . Do

SS = {αm = 1Γ0 +
∑
i=1,n

2mi1Γi ;m = (m1, . . . ,mn) ∈ Zn} ' Zn,

to get that [A]
SS
z0,p = (A0, A1 . . . , An)(|Γi |z0 ,i=1 ,...,n),p;K : the Sparr K-space, see [2].

(2.2.3) Let A = (A0, A1, A2, A3) be a family of 22 spaces over the partition {Γ0 ,Γ1 ,Γ2 ,Γ3} of Γ . Do

SF = {αm = 1Γ0 + 2k1Γ1 + 2l1Γ2 + 2k2l1Γ3 ;m = (k, l) ∈ Z2} ' Z2,

to obtain that [A]
SF
z0,p = (A0, A1, A2, A3)(θ1,θ2),p;K , where θ1 = |Γ1 ∪ Γ3 |z0 , θ2 = |Γ2 ∪ Γ3 |z0 : Fernández K-

space, which can be generalized to families of 2d spaces with m ∈ Zd, see [4].

(2.2.4) Let A = (A0, A1, . . . , An); do

SCP = {α(k,l) = 1Γ0 +
∑
i=1,n

2kxi+lyi1Γi ; (k, l) ∈ Z2} ' Z2,

to obtain for an interior point (α, β) of Π that [A]
SCP
z0,p = A(α,β),p;K with (α, β) =

∑
i=1,n |Γi |z0 (xi, yi): Cobos-

Peetre K-space, see [5]. Here (xi, yi) are the vertices of a convex polygon Π in the affine plane R2. We assume
that x0 = 0 = y0 and that 0 < xi + yi for all i = 1, n.

With the same subgroup S = SLP, SS, SF and SCP in each case, apply the J-method just described to
obtain the J-spaces (A)Sz0,p of Lions-Peetre, Sparr, Fernández and Cobos-Peetre, respectively. The density
of J (A) in each Ai is not necessary for the J-method.

We have for α, β ∈ S = SLP, SS, SF or SCP

(2.2.5) K(α, a) ≤ max(α
β

)K(β, a) for all a ∈ U ,
(2.2.6) J(α, a) ≤ max(α

β
)J(β, a) for all a ∈ A

and

(2.2.7) K(α, a) ≤ min(α
β

)J(β, a) for all a ∈ A; .

The K and J-spaces [A]Sz0,p and (A)Sz0,p obtained above for the different subgroups SLP, SS, SF or SCP, are
interpolation spaces and the J-space is embedded into the K-space, ie., A ↪→ (A)Sz0,p ↪→ [A]Sz0,p ↪→ U . All these
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facts can be derived from the following properties fulfilled by all the subgroups S = SLP, SS, SF or SCP:

(2.2.8) for every α ∈ S there exists a constant Cα such that P (γ) ≤ Cαα(γ),

(2.2.9) for every z0 ∈ D:
∑
α∈S

ess inf α(γ)

α(z0)
<∞,

(2.2.10) for every z0 ∈ D:
∑
α∈S

α(z0)

ess sup α(γ)
<∞,

(2.2.11) S is a multiplicative subgroup of L

and the following Theorem, see [10]:

Theorem 2.1. Let S be one of the subgroups SLP, SS, SF or SCP; let A and B be two (n+1)-tuples over
the same partition {Γ0 ,Γ1 , . . .Γn} of Γ and let T : A → B be a bounded interpolation operator. Then,
TSz0,p : [A]Sz0,p → [B]Sz0,p and TSz0,p : (A)Sz0,p → (B)Sz0,p are bounded with norms ≤ σ(T ).

So, the above K and J-methods for finite families are exact interpolation functors. The K and J-methods of
Sparr are much better than exact, they are of type tθ, that is, the operator norms satisfy the inequality of
convexity: ‖TSSz0,p‖ ≤ ‖T0‖θ0 · ‖T1‖θ1 · · · ‖Tn‖θn , where θi = |Γi |z0 and

∑
θi = 1. Regarding the inequality of

convexity see [[2], Theorems 4.2 and 4.4] and [[10], Theorems 3.6.b and 4.6.b].

Since (B)Sz0,p ↪→ [B]Sz0,p the interpolated operator TSz0,p : (A)Sz0,p → [B]Sz0,p is also bounded.

As a consequence of (2.2.7), Hölder inequality and (2.2.10) we have:

Lemma 2.1. Let (u(α))α∈S be a map from S into A, S = SLP, SS, SF or SCP and 1 < p <∞; if
(
J(α,u(α))
α(z0)

)
α∈S
∈

`p(S) then,
∑
α∈S u(α) converges absolutely in U .

Proof. Let u(α) = uα; by (2.2.7)

‖uα‖U ≤ K(1, uα) ≤ min[
1

α(γ)
] · J(α, uα) =

α(z0)

ess sup α(γ)
· J(α, uα)

α(z0)
;

then, for every A ⊂ S, finite,

∑
α∈A

‖uα‖U ≤
∑
α∈A

α(z0)

ess sup α(γ)
· J(α, uα)

α(z0)
;

by Hölder inequality,

≤

(∑
α∈S

[
α(z0)

ess sup α(γ)

]p′) 1
p′

·

(∑
α∈S

[
J(α, uα)

α(z0)

]p) 1
p

;

the conclusion follows by (2.2.10) and the hypothesis Q.E.D.

2.3 Operators between Banach spaces
Let L(E,F ) be the space of all bounded linear operators between the Banach spaces E and F . An operator ideal
I is a class of bounded linear operators such that the components I(E,F ) = I ∩ L(E,F ) satisfy the following
conditions: (i) I(E,F ) is a linear subspace of L(E,F ), (ii) I(E,F ) contains the finite rank operators and (iii)
if R ∈ L(X,E), S ∈ I(E,F ) and T ∈ L(F, Y ) then, TSR ∈ I(X,Y ); cf. [[9], Definition 1.1.1].
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The operator ideal is injective if for every isomorphic embedding J ∈ L(F, Y ) one has that T ∈ L(E,F )
and JT ∈ I(E, Y ) implies T ∈ I(E,F ); it is surjective if for every surjection Q ∈ L(X,E) one has that
T ∈ L(E,F ) and TQ ∈ I(X,F ) implies T ∈ I(E,F ). The ideal is closed if the components I(E,F ) are closed
subspaces of L(E,F ), see [[9], §4.2, 4.6 and 4.7].

Every operator ideal I defines a class of Banach spaces, Space(I), in the following way: E ∈
Space(I) if and only if 1E ∈ I(E,E).

Let S be a countable set and (Xα)α∈S a family of Banach spaces; denote by (
∑
α∈S Xα)p, with 1 ≤ p <∞, the

space of all the maps (xα)α∈S , such that xα ∈ Xα with the norm ‖(xα)α∈S‖ = (
∑
α∈S ‖xα‖

p
Xα

)1/p < ∞, see
[[9], Definition C.4.1].

For every i, j ∈ S denote by Ji the natural embedding of Xi into (
∑
α∈S Xα)p and by Qj the natural projection

of (
∑
α∈S Xα)p onto Xj , see [[9], Definition C.4.1]

Definition 2.2. The ideal I satisfies the
∑
p-condition for 1 ≤ p < ∞, if for any two families

(Eα)α∈S and (Fα)α∈S of Banach spaces the following holds: if T ∈ L((
∑
α∈S Eα)p, (

∑
α∈S Fα)p) and QjTJi ∈

I(Ei, Fj) for every i, j ∈ S then T ∈ I((
∑
α∈S Eα)p, (

∑
α∈S Fα)p).

Hereafter we shall deal with the concepts of separable, weakly compact, Rosenthal, Radon-Nikodým and
decomposing operators between Banach spaces. In order to obtain a short paper, we shall assume that the
reader is acquainted with these geometric concepts which are thoroughly studied in [8] and in[9]. The Banach-
Saks, alternate-signs Banach-Saks and Banach-Saks-Rosenthal (or weak Banach-Saks) operators are studied in
[13] and in the outstanding book of J. Diestel [14]. All of these classes of operators are operator ideals according
to A. Pietsch and, like in his book[9], Gothic capital letters will represent each one of them. Thus, X will be
the ideal of separable operators; K the ideal of compact operators; W, that of weakly compact operators; for
Rosenthal operator ideal, i.e., the ideal of those operators that do not transport isomorphic copies of `1, (see[15],
[Chapter XI] and [[8], Section 4]), we will use R (instead of B−1 ◦K, see [[9], §3.2]); A will be the unconditionally
summing operator ideal, i.e., the ideal of those operators that do not transport isomorphic copies of c0, see [[15],
Chapter V], [[8], Section 4] and [[9], §1.7]; Y will be the Radon-Nikodým operator ideal, see [[8], Section 7] and
Q that of decomposing operators, see [[9], §24.4].

T ∈ L(E,F ) is a Banach-Saks operator if any bounded sequence (xn) of E possesses a subsequence
(x′n) such that (Tx′n) is Cesàro convergent i.e., the sequence of the averages 1

n

∑n
k=1 Tx

′
k converges. T is an

Alternate sign Banach-Saks operator if any bounded sequence (xn) of E possesses a subsequence (x′n) such that
the sequence of the averages 1

n

∑n
k=1(−1)kTx′k converges. T is a Banach-Saks-Rosenthal operator if any weakly

null sequence (xn) of E possesses a subsequence (x′n), such that (Tx′n) is Cesàro convergent. See [13] and [[14],
Chapter Three, §7] for a thorough study of these operators. We shall write BS, for the Banach-Saks operator
ideal; ABS for the alternate sign Banach-Saks operator ideal and BSR for the Banach-Saks-Rosenthal operator
ideal. The relations BS ⊂ ABS ⊂ BSR, with strict inclusions, are well known. Also is well known the relation
BS ⊂W, strict inclusion.

All the above mentioned operator ideals are closed, injective and, except for A,Y and BSR, they are also
surjective, see [9]. The injectivity of Q follows from the fact that L∞(Ω, µ) possesses the metric extension
property (see [9], C.3.2, Proposition 2]). From the remarkable equality Q = Ydual, [[9], Theorem 24.4.3], we
obtain that Q is closed and surjective (since Y is closed and injective), see [[9], §24.2.7 and 24.2.8]. Decomposing
operators are sometimes called Asplund Operators.

Let I be an operator ideal. The operator T ∈ L(E,F ) belongs to the dual ideal Idual(E,F ), if the adjoint
operator T ∗ belongs to I(F ∗, E∗), see [[1], §4.4]. For example Q = Ydual, see [[9], Theorem 24.4.3].
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If C and D are two operator ideals, the product C ◦D, in the sense given to it by Pietsch see [[9], 3.1], is a new
operator ideal. The product of several operator ideals will be called a mixed operator ideal. Operator ideals
such as M = X ◦W, M = X ◦ R, M = R ◦ Rdual, M = (X ◦ ABS)dual or M = X ◦ Rdual ◦ Q and others
(being, all of them, injective, surjective and closed), are mixed operator ideals, see [16] and [3]. Their elements
are called mixed operators. It should be said that in all the cases of this paper, C ◦D=C ∩D.

It holds that

(2.3.1) BS = W ◦BSR,
(2.3.2) BS = W ◦ ABS

and that

(2.3.3) ABS = R ◦BSR;

see [[3] Theorem 4.4].

For the proof of the next theorem see [[16], Theorem 3.3] and [[3], Theorem 5.3]:

Theorem 2.2. The ideals X, W, R, BS, ABS, Q, dual ideals Xdual, Rdual, BSdual, ABSdual, Qdual and
mixed operator ideals such as, for example, M = X ◦W, M = X ◦R, M = R ◦Rdual, M = (X ◦ ABS)dual or
M = X ◦Rdual ◦Q are, all of them, closed, injective, surjective and satisfy the

∑
p-condition for all 1 < p <∞.

3 The JK-method
Let A = (A0, A1) be an interpolation pair of Banach spaces such that A0 ↪→ A1. In this case, see [[6], Chapitre
I, §5], the intersection space and the sum space are respectively A0 and A1 (equivalent norms); let (A0, A1)θ,p
(0 < θ < 1, 1 < p < ∞), be the interpolation spaces obtained from them by the Lions-Peetre method of
interpolation for pairs. We have, (see [[1], Theorems 5.1, 6.2 and 7.3] and [[16], Theorem 3.3]):

Theorem 3.1. Let A = (A0, A1) and B = (B0, B1) be two interpolation pairs of Banach spaces with A0 ↪→ A1

and B0 ↪→ B1; let T : A → B be a bounded interpolation operator; let I be one of the following operator
ideals: X,W,R, BS,ABS,Q, dual ideals Xdual,Rdual, BSdual,ABSdual,Qdual or a mixed operator ideal as,
for example, I = X ◦ W, I = X ◦ R, I = R ◦ Rdual, I = (X ◦ ABS)dual or I = X ◦ Rdual ◦ Q. Then,
Tθ,p : (A0, A1)θ,p → (B0, B1)θ,p, 0 < θ < 1 and 1 < p <∞ is in I if and only if TJS : A0 → B1 is in I.

3.1 The Beauzamy property of interpolation
Let F1 and F2 be two functors (or methods) of interpolation for finite families and I an operator ideal.

Definition 3.1. We shall say that I has the Beauzamy property of interpolation or the B-property in
short, with respect to the methods F1 and F2, if for any two (n+1)-tuples A, B and bounded operator T : A→ B,
the interpolated operator TF1F2 : F1(A) → F2(B) belongs to I if and only if the operator TJS : J (A) → S(B)
from the intersection space into the sum space belongs to I. If F1 = F = F2 we shall say that I has the
B-property with respect to the method F .

Take for F1 any of the J-methods described above, with 1 < p < ∞ and for F2 the corresponding K-method.
If A and B are two (n+1)-tuples, we have that F1(A) = (A)Sz0,p and F2(B) = [B]Sz0,p with 1 < p < ∞ and
S = SLP, SS, SF or SCP.

Lemma 3.1. Any injective and surjective operator ideal I which satisfies the
∑
p-condition, 1 < p <∞, possess

the B-property with respect to the J and K-methods of Lions-Peetre, Sparr, Fernández and Cobos-Peetre.

98



Quevedo; J. Adv. Math. Com. Sci., vol. 39, no. 11, pp. 91-102, 2024; Article no.JAMCS.125376

Proof. Let A and B be two (n+1)-tuples over the same partition {Γ0 , Γ1 , . . . ,Γn} of Γ and suppose that
J (A) and J (B) are dense in each Ai and Bi respectively; let T : A → B be a bounded interpolation operator
and assume that TJS ∈ I. Write A for the intersection J (A) and U for the sum S(B). Define on A and U the
following equivalent norms (equivalent to the norms of the intersection and sum spaces, respectively):

‖a‖α =
J(α, a)

α(z0)
for a ∈ A and α ∈ S,

‖u‖α =
K(α, u)

α(z0)
for u ∈ U and α ∈ S,

where S = SLP, SS, SF or SCP is the corresponding subgroup of L for each one of the methods considered.
Denote by Aα the space (A, ‖ ‖α) and by Uα the space (U , ‖ ‖α). For each map (xα)α∈S ∈ (

∑
α∈S Aα)p ,

the sum
∑
α∈S xα converges (absolutely, according to Lemma 2.1) in S(A). Then, there is a surjection Q from

(
∑
α∈S Aα)p onto the J-space (A)Sz0,p:

Q(xα)α∈S =
∑
α∈S

xα (convergence in S(A))

and an isomorphic embedding J from theK-space [B]Sz0,p into (
∑
α∈S Uα)p defined by J(y) = (yα)α∈S where yα =

y for all α.

Denote by Ji the natural embedding of Ai into (
∑
α∈S Aα)p and by Qj the natural projection of (

∑
α∈S Uα)p

onto Uj . The operator QjJTSz0,pQJi is just TJS . It is, then, an operator of the class I and, since I satisfies the∑
p-condition, the operator JTSz0,pQ belongs to I((

∑
α∈S Aα)p, (

∑
α∈S Uα)p). Now, injectivity and surjectivity

of I imply that TSz0,p ∈ I((A)Sz0,p, [B]Sz0,p). Converse is clear Q.E.D.

3.2 The Method
Lemma 3.1 applies to all the operator ideals referred to in Theorem 2.2 and its extraordinary beauty is evident
in those cases where the J and K-methods are equivalent (see the exhaustive studies of Sparr [2] and that of
Fernández [4] on the equivalence of the J and K-methods for finite families of Banach spaces). It is impossible to
obtain Lemma 3.1 from the J-method into the J-method or from the K-method into the K-method. Instead of
going deeper in studying the equivalence of the J and K-methods, we have preferred to look for a method F in
order that Lemma 3.1 applies from F(A)→ F(B). That is why we propose the JK-method of real interpolation:
the JK-method makes that the question of the equivalence of the J method and the K method be irrelevant.

In the near future we will investigate the JK-method from the view point of duality and reiteration.

Let A be an (n+1)-tuple, 2 ≤ n; apply any of the J and K-methods for finite families of Sparr, Fernández
or Cobos-Peetre to obtain the interpolation spaces (A)Sz0,p0 and [A]Sz0,p0 with S = SS, SF or SCP and 1 <
p0 < ∞. Given that (A)Sz0,p0 is immersed into [A]Sz0,p0 , apply any of the J or K-methods of Lions-Peetre to
the couple

(
(A)Sz0,p0 , [A]Sz0,p0

)
and obtain the, so called in this paper, JK-spaces: JK(A) = 〈A〉Sz0,p0,θ,p =(

(A)Sz0,p0 , [A]Sz0,p0
)
θ,p

, with 0 < θ < 1 and 1 < p <∞. This time 〈A〉Sz0,p0,θ,p in curly brackets.

Definition 3.2. The method of obtaining the space 〈A〉Sz0,p0,θ,p from the (n+1)-tuple A will be called the JK-
method of Sparr, Fernández or Cobos-Peetre according to the subgroup S.

The JK-method in any of its variants, is an exact interpolation functor on the category Cn of the (n+1)-tuples:

Proposition 3.1. Let S be one of the subgroups S = SS, SF or SCP; let A and B be two (n+1)-tuples over
the same partition {Γ0 ,Γ1 , . . .Γn} of Γ and let T : A → B be a bounded interpolation operator. Then,
TSz0,p0,θ,p : 〈A〉Sz0,p0,θ,p → 〈B〉

S
z0,p0,θ,p

is bounded with norm ≤ σ(T ).
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Clearly the JK-method of Sparr is of type tθ:

Proposition 3.2. Let S = SS; let A and B be two (n+1)-tuples over the same partition {Γ0 ,Γ1 , . . .Γn} of Γ

and let T : A → B be a bounded interpolation operator. For the operator TSSz0,p0,θ,p : 〈A〉SSz0,p0,θ,p → 〈B〉
SS
z0,p0,θ,p

it holds that ‖TSSz0,p0,θ,p‖ ≤ ‖T0‖θ0 · ‖T1‖θ1 · · · ‖Tn‖θn , where θi =| Γi |z0 = the harmonic measure of Γi with∑
i=1,n θi = 1.

Now we state the main theorem of this paper:

Theorem 3.2. The single ideals X,W,R,BS,ABS,Q, dual ideals Xdual,Rdual, BSdual,ABSdual,Qdual and
mixed operator ideals as, for example, M = X ◦W, M = X ◦ R, M = R ◦ Rdual, M = (X ◦ ABS)dual or
M = X ◦Rdual ◦Q, all of them possess the B-property with respect to the JK-method of Sparr, Fernández and
Cobos-Peetre, depending on the parameters z0 ∈ D, 1 < p0 <∞, 0 < θ < 1 and 1 < p <∞.

Proof. Let A and B be two (n+1)-tuples over the same partition {Γ0 ,Γ1 , . . .Γn} of Γ and let T : A→ B be a
bounded interpolation operator; let I be one of the mentioned operator ideals and assume that TJS : J (A)→
S(B) belongs to I. By Lemma 3.1, TSz0,p0 : (A)Sz0,p0 → [B]Sz0,p0 belongs to I and by applying Theorem 3.1 to the
couples ((A)Sz0,p0 , [A]Sz0,p0) and ((B)Sz0,p0 , [B]Sz0,p0) we have that T : 〈A〉Sz0,p0,θ,p → 〈B〉

S
z0,p0,θ,p

is in I. Converse
is clear Q.E.D.

Corolary 3.1. Let A be an (n+1)-tuple and let I be one of the aforesaid operator ideals. Then, for the
spaces 〈A〉Sz0,p0,θ,p with z0 ∈ D, 1 < p0 < ∞, 0 < θ < 1, 1 < p < ∞ and S = SS, SF or SCP, we have that
〈A〉Sz0,p0,θ,p ∈ space(I) if and only if the injection i : J (A)→ S(A) is in I.

As it was said in the introduction, the history of the B-property began with those early results of B. Beauzamy
regarding the reflexivity, presence of copy of `1 and separability of the spacesAθ,p, 0 < θ < 1, 1 < p <∞, obtained
by the Lions-Peetre Method for pairs. At the same time in [13] it was obtained for the spaces (A0, A1)θ,p
(0 < θ < 1, 1 < p < ∞) with A0 ↪→ A1 that they possess the Banach-Saks property or the Alternate sign
Banach-Saks property if and only if the embedding A0 ↪→ A1 possesses the corresponding property. It was in
[17], a little later, that the result of Beauzamy for the Banach-Saks property was extended to the general spaces
Aθ,p, 0 < θ < 1, 1 < p < ∞, answering a question raised in [[6], page 56] and aggregating to the list the space
property of Decomposing operators.

An operator ideal I has the factorization property if for every operator T ∈ I(E,F ), there exists a Banach
space X ∈ Space(I), and operators U ∈ L(E,X) and V ∈ L(X,F ) in such a way that T = V U . Through an
argument such as that presented by Beauzamy in [[6], page 37] and by Heinrich in [[17], page 406] we obtain the
Factorization Theorem:

Theorem 3.3. All the operator ideals from Theorem 3.2 have the factorization property.

Proof. See [[1], Secction 8, Lemma 8.1, Theorem 8.2] and [[16]16, Secction 4, Lemma 4.1, Corolary 4.2] Q.E.D.
So, for example, from Theorem 3.3 we obtain that every separable, weakly compact operator factors through a
separable and reflexive Banach space, see [16].

Being the surjectivity of the operator ideal I so necessary, we can no expect a similar result to Theorem 3.2 or
Theorem 3.3 for the operator ideals A,Y or BSR, see [[6], pages 36 and 57]. N. Ghoussoub and W. B. Johnson
in [18] proved that neither A nor Y have the factorization property.

In relation with the extreme cases p0 = 1, c0,∞ and/or p = 1, c0,∞, see [[1], Remark 6.5].
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4 Conclusion
It is impossible to obtain Lemma 3.1 from a method into the same method. Instead of going deeper in studying
the equivalence between different methods, we have preferred to look for a method in order that Lemma 3.1
applies from a method into the same method. That is why we propose this new method of real interpolation:
This new method makes that the question of the equivalence between different methods be irrelevant.
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