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Abstract 
 

We consider developing a four-step one offgrid block hybrid method for the solution of fourth derivative 
Ordinary Differential Equations. Method of interpolation and collocation of power series approximate 
solution was used as the basis function to generate the continuous hybrid linear multistep method, which 
was then evaluated at non-interpolating points to give a continuous block method. The discrete block 
method was recovered when the continuous block was evaluated at all step points. The basic properties of 
the methods were investigated and said to be converge. The developed four-step method is applied to 
solve fourth derivative problems of ordinary differential equations from the numerical results obtained; it 
is observed that the developed method gives better approximation than the existing method compared 
with. 
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1 Introduction 
 
In this paper, a four-step one off grid point hybrid block method is considered to approximate ordinary 
differential equations of the form 
 

         , , ', '', ''' , , ' ' , '' '' , ''' '''0 0 0 00 0 0 0

iv
y f x y y y y y t y y t y y t y y t y    

              (1)
 
 

 
Various approaches can be used for the analytic solutions of fourth order ordinary differential equations. 
Researchers are interested in equation (1) because of its wide area of applications in various fields such as in 
modeling scientific and engineering, control theory, fluid dynamics, mechanical systems without dissipation, 
celestial mechanics and other related real life problems. 
 
Solving higher order derivatives method by reducing them to a system of first-derivative approach involves 
more functions to evaluate which then leads to a computational burden as in [1,2]. Different method have been 
proposed for the solution of (1) ranging from predictor-corrector method to hybrid methods. Despite the success 
recorded by the predictor-corrector methods, its major setback is that the predictor are in reducing order of 
accuracy especially when the value of the step-length is high and moreover the result are at overlapping interval. 
However, many researchers have addressed these setbacks [3,4,5,6,7,8]. The direct methods of solving (1) as 
reported in Literatures is more efficient and gives high accuracy and speed than the method of reduction to first 
order ordinary differential equations [9,10,11,12, 13,14]. 
 
Scholars who recently adopted the hybrid method other than the direct method in approximation of (1) include 
among others [15,16,17]. 
 
In this paper, we developed a four-step one offgrid hybrid point block method for solution of initial value 
problems of fourth order ordinary differential equation, which is implemented in block. The method developed 
evaluates less function per step and circumventing the Dahlquist barrier’s by the introduction of a hybrid points. 
 
 The paper is organised as follows: In section 2, we discuss the methods and the materials for the development 
of the method. Section 3 considers analysis of the basis properties of the method, numerical experiments where 
the efficiency of the derived method is demonstrated on some numerical examples and discussion of results. 
Lastly, we concluded in section 4. 
 

2 Derivation of the Method 
 
This section describes the objective of which the derivations of the hybrid block method using the linear 
multistep Algorithm. The Algorithm shall be in the form 
 

 
3 4 14

,
20 0

y x y h f f kk n ki jn i n ji j
       
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 and are non zero. 

 
Equation (2) is obtained by considering the approximate solution of the power series in form of 
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3r and 3s are the numbers of interpolation and collocation points. The continuouos approximation is then 
constructed by imposing two conditions which are 
 

 
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Equation (4) result to 






  sr  , which gives a non linear equation of the form 

 
UAX                                                                                                                                                    (5) 

 
Which will then be evaluated through a matrix inversion algorithm in which the values of sjandsi ''  are 

determined. By the substitutions of the values of sjandsi ''  obtained into equation (3) gives a continuous 

hybrid linear multistep method of the form 
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We then impose (4) on 
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The first, second and third derivatives of (6) gives 
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We use equation (7) at 
4

,

2
1 





n

xx
n

xx  to get 

 

             (11) 

 

      (12) 

 

Evaluating (8), (9) and (10) at all points we obtain equations (13), (14) and (15) as shown in Tables 1, 2 and 3 
respectively. 
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Table 1. Coefficients of sjandsi ''''   for equation (8) which was evaluated at all points gives 
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(13) 
 

Table 2. Coefficients of sjandsi ''''''   for equation (9) which was evaluated at all points gives 
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Table 3. Coefficients of ''' ' ''' 's and s
i j

   for equation (10) which was evaluated at all points gives 
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3 Analysis of the Method 
 
3.1 Order of the block 
 

According to fatunla (1991) and lambert (1973) the truncation error associated with (2) is defined by 
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Assumed that 
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xy can be differentiated. Expanding (16) in Taylor’s series and comparing the coefficient of h  

gives the expression 
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Where the constant coefficients are given below 
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Definition 1: The linear operator and the associated continuous linear multistep method (5) are said to be of 

order p  if 4,04.032,010...210  pcpcandpcpcpcpcccc  is called the error constant 
and the local truncation error is given by 
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For our method 
 
Comparing the coefficient of h  gives 06...3210  CCCCC and 
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Hence our method is of order three (3). 
 

3.2 Consistency 
 
Four-Step One Hybrid Block fourth derivative hybrid method is said to be consistent according to Areo and 
Omojola (2015) if all the following six conditions are satisfied 
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The order of the method must be greater than or equal to one i.e 
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3.3 Zero stability of our method 
 
Four-Step One Hybrid Block fourth derivative hybrid method is said to be zero-stable if as 0h  , the root 
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Hence, our method is zero-stable. 
 

3.4 Numerical example 
 
Problem I We consider a special fourth order differential equation (Source: Adoghe & Omole 2019) 
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Table 4. Comparison of the proposed method with Adoghe and Omole 2019 
 

x-values Exact solution Computed solution Error in 
our method 

Error in [17] 

0.003125 - 0.00312984720468769600 - 0.00312984720468769600 0.0000e+00 5.8350e-18 

0.00625 - 0.00626924635577210114 - 0.00626924635577210114 0.0000e+00 4.6708e-17 

0.009375 - 0.00941798368752841945 - 0.00941798368752841944 1.0000e-20 5.2467e-17 

0.00125 - 0.01257584533946248273 - 0.01257584533946248273 0.0000e+00 9.3430e-17 

0.015625 - 0.01574261735661109244 - 0.01574261735661109244 0.0000e+00 9.9220e-17 

0.01875 - 0.01891808568984328399 - 0.01891808568984328399 0.0000e+00 1.4019e-16 

0.021875 - 0.02210203619616251069 - 0.02210203619616251070 1.0000e-20 1.4613e-16 

0.025 - 0.02529425463900974441 - 0.02529425463900974442 1.0000e-20 1.8712e-16 

0.028125 - 0.02849452668856748983 - 0.02849452668856748984 1.0000e-20 1.9324e-16 

0.03125 - 0.03170263792206470950 - 0.03170263792206470951 1.0000e-20 5.8350e-18 
 
Problem II We consider the fourth order ODE (Source: Akinfenwa et al. 2016) 
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Table 5. Comparison of the proposed method with Akinfenwa et al 2016 
 

x-values Exact solution Computed solution Error in 
our method 

Error in 
[16] 

0.003125 1.00937508138036727920 1.00937508138036727920 0.00e+00 1.00e-18 

0.00625 1.01875065104675294860 1.01875065104675294860 0.00e+00 2.00e-18 

0.009375 1.02812719730424913310 1.02812719730424913310 0.00e+00 5.20e-17 

0.00125 1.03750520849609617210 1.03750520849609617200 1.00e-19 2.39e-16 

0.015625 1.04688517302275858900 1.04688517302275858910 1.00e-19 5.52e-16 

0.01875 1.05626757936100329750 1.05626757936100329750 0.00e+00 9.57e-16 

0.021875 1.06565291608298078600 1.06565291608298078600 0.00e+00 1.20e-15 

0.025 1.07504167187531003060 1.07504167187531003060 0.00e+00 1.21e-15 

0.028125 1.08443433555816787740 1.08443433555816787740 0.00e+00 6.27e-16 

0.03125 1.09383139610438364350 1.09383139610438364340 1.00e-19 5.54e-16 
 
Problem III Consider the initial value problem (source: Adeyeye & Omar 2018) 
 

 100144

2.1
0''',

100144

1
0'',

5072

1.1
0',00,''
































































 yyyyyivy
 

 

Exact Solution: 
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Table 6. Comparison of the proposed method with Adeyeye & Omar 2018 
 
x-
values 

Exact solution Computed solution Error in our 
method 

Error in [7] 

0.1 0.00004034461209373069 0.00004034461209373069 0.00e+00 6.51e-19 
0.2 0.00008063166098895974 0.00008063166098895974 0.00e+00 1.30e-18 
0.3 0.00012086093247161511 0.00012086093247161511 0.00e+00 4.77e-18 
0.4 0.00016103221289185685 0.00016103221289185685 0.00e+00 1.73e-17 
0.5 0.00020114528916616351 0.00020114528916616351 0.00e+00 4.34e-17 
0.6 0.00024119994877941305 0.00024119994877941305 0.00e+00 9.54e-17 
0.7 0.00028119597978695816 0.00028119597978695816 0.00e+00 1.81e-16 
0.8 0.00032113317081669604 0.00032113317081669604 0.00e+00 3.16e-16 
0.9 0.00036101131107113260 0.00036101131107113259 1.00e-20 5.19e-16 
1.0 0.00040083019032944098 0.00040083019032944098 0.00e+00 8.05e-16 

 

4 Conclusions 
 
It is evident from the above tables that our proposed method has significant improvement over the existing 
methods. The four-step one hybrid point block method is proposed for direct solution of general fourth order 
ordinary differential equations where by it is self-starting when implemented. The developed method converges 
and is of Order three. 
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