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ABSTRACT 
 

The quality of methods and products are usually influenced by several input factors. Research has 
recently focused on understanding the effects of multidimensional and interconnected input                
factors on the results of pharmaceutical products and analytical methods using                                
Design of Experiment (DoE). Furthermore, it examines how DOE may be implemented, both for 
students and teachers, as well as highlighting historical perspectives on DOE. A good experimental 
design can help you make the most use of the available resources and make the analysis of the 
results easier. Collaborations between researchers and practitioners that are pushing the 
boundaries of experimental design are examined. It provides an overview of the principles and 
applications of the most common screening and response surface design, as well as creating 
mixtures designs. 
 

 
Keywords: Design of experiments; design space; screening designs; factorial designs; response 
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1. INTRODUCTION  
 
Experimental design is not a new concept. In the 
1920s, Sir Ronald Fisher, a legendary 
statistician, laid the foundation for modern 
statistical research with his contributions to 
statistics, which have been hailed as "a genius." 
Research conducted has maintained a proactive 
stance, which is at the core of the current 
regulatory system that controls the development 
of pharmaceutical products [1,2,3]. Walter A. 
Shewhart, William E. Deming, and Joseph M. 
Juran extended this work and advocated a 
process-based culture for incorporating quality 
into products. A five-step process called "Quality 
by Design'' was coined by Juran to emphasize 
the need to incorporate Quality into goods and 
services; this process involves knowing the 
customer, analyzing his needs, translating them 
into product features, developing it, and 
introducing them into operations. W.E. Deming 
presented his systematic approach to wisdom, 
using system thinking, understanding variation, 
theory of knowledge, and psychology, about half 
a century before Juran. According to him, quality 
assurance should focus more on the process 
than the results since "if you can't describe the 
process, you're not doing it right" and "quality is 
already in the product [4]." Control charts 
featuring statistical process control were featured 
in Schewhart's work on quality improvement. 
Since the pharmaceutical industry relies heavily 
on quality and process, it is likely the first sector 
to adopt these concepts. Thus, regulatory bodies 
asserted that quality cannot be built into products 
(that is, made into it by design) early in the 
millennium [5]. A Design of Experiments (DoE) is 
used in research and industry contexts to 
implement Quality by Design (QBD). It is 
characterized as the primary system of 
pharmaceutical development because, as a 
legacy of Fisher's, it demands the application of 
statistical thinking at the outset. Develop and 
build quality levels in pharmaceutical products 
has become increasingly popular. The 
manufacturing process of pharmaceutical 
products is the major source of quality problems 
according to Juran. Studies and tests cannot 
validate the safety and efficacy of a poorly 
designed pharmaceutical product [6,7]. 
Consequently, QbD assumes that more analyses 
will not improve quality. Another way to put it is 
that the product's quality must be outstanding to 
be built in. This approach to pharmaceutical 
development starts with clearly defined goals and 
focuses on product and process knowledge. It is 
based on strong science and risk management of 

high quality. Using QbD for pharmaceutical 
production results in knowledge and 
understanding. a) Achieving meaningful product 
quality criteria b) Stabilizing processes and 
reducing variability c) Improving pharmaceutical 
development efficiency d) Improving cause-effect 
analysis and regulatory flexibility. Worldwide, 
most regulatory bodies have endorsed risk-
based approaches and comprehensive quality 
assurance in pharmaceutical development.  
There have been several publications discussing 
how the QbD methods were used in the 
development of analytical procedures. By 
utilizing analytical quality management, robust 
and cost-effective analytical procedures are 
developed and refined. QbD implementation that 
uses analytical methods provides more accurate 
results while also reducing the probability of 
failure. For centuries, pharmaceutical firms have 
focused on enhancing one factor at a time 
(OFAT). All variables are unchanged, apart from 
one variable that is altered in a reasonable range 
(or level). The OFAT method does not recognize 
factor interactions, which could lead to 
insufficient development and optimization. There 
is a possibility that if you design experiments 
properly, you can achieve superior results within 
a few tests. DoE's collection of statistical 
techniques includes screening and optimization 
designs. In pharmaceutical and analytical QbD, a 
DoE is the most important component [8,9]. As a 
result, the current study discusses theoretical 
and practical issues for using DoE in 
pharmaceutical and analytical QbD. 
 

2. RESEARCH 
 
Among several publications, including more than 
500 in 2005, as summarized by Singh et al., the 
Marlow and Shangraw study is regarded as the 
first publication on DoE application to the design 
of pharmaceutical dosage forms. There are 
currently 5200 results on Scopus for the 
keywords "Design of Experiments" and 
"pharmaceutical," covering the period from 1978-
2009. The adoption of these strategies is 
becoming more common in books and articles 
about statistics and quality, but the industry has 
not made use of them as frequently as it should. 
In 2006, we also surveyed manufacturers in the 
Basque Country. Business experiments are used 
by 94 percent of businesses, with the majority 
following OFAT tactics, and only 20 percent 
applying a predetermined statistical methodology 
[10]. A methodology is also necessary, with 76 
percent of respondents agreeing that the lack of 
a defined approach is the most significant 
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obstacle to DoE deployment. With the advent of 
the International Council Harmonization (ICH) Q8 
guideline, which provided a conducive 
environment for the use of dose-equivalent 
engineering, there has been significant progress 
in research and industrial applications related to 
this technology. Additionally, user-friendly 
software has been available to ensure easy 
design composition and analysis [11,12]. 
 

2.1 Definitions and Terminologies 
 
Quality by Design (QbD) is defined as a 
systematic approach to development that begins 
with predefined objectives and emphasizes 
product and process understanding and process 
control, based on sound science and quality risk 
management. It is a method that structures and 
organizes information about the relationship 
between process factors and output factors. Also 
called "Design of Experiments" (DoE). 
Essentially, it is the process of establishing how 
inputs influence outputs that develops a process 
knowledge. 
 
Treatment - Various treatment combinations. 
 
Treatment levels - Intensity of treatment during 
the experiments 
 
Treatment factors (variables) - A controlled 
condition in an experiment. 
 
Experimental unit - The subject upon whom 
treatment will be applied and from which a 
response will be measured. Also referred to as a 
measurement of responses. 
 
Responses - Results obtained after treatments 
are applied to experimental units  
 
Experimental design - Treatment level 
assignment. 
 

Analysis of variance (ANOVA) - Method for 
identifying the causes of variability in responses. 
 

Replication - Under identical experimental 
conditions, observing the responses of multiple 
experimental units.  
 

Randomization - Choosing experimental units 
not systematically. 
 

Confounding - An experiment in which the effect 
of one factor or treatment cannot be 
distinguished from the effect of another factor or 
treatment 

Independent variables: Directly controlled by 
formulation scientists 
 
Dependent variables: Result variables 
 
Factors: Qualitative and quantitative factors. 
 
Level: Value assigned to a factor 
 
Responses surface plot: A plot of the 
relationship between the independent factor and 
the dependent factor in a 3-D 
 
Interaction: It provides the net effect of two or 
more variables without requiring additivity of their 
effects 
 
Effect: Amount of the change 
 
Contour plot: An outline of one independent 
variable plotted against another while keeping 
the response constant 
 
Contour lines: calculated contour lines over a 
counterplot 
 
Orthogonality: When no interaction occurs due 
to the main factor of interest 
 
Resolution: Measuring confounding 
 

3. DESIGN OF EXPERIMENTS: STEPS TO 
TAKE 

 
The design of experiments must follow the 
following steps to produce good findings. 
 

i. Plan how to achieve your goal 
ii. Determine the variables in the process 
iii. Consider a design that allows for 

experimentation 
iv. Work on a design 
v. Make sure the experimental assumptions 

match the data 
vi. The findings should be examined and 

analyzed. 
 

4. CONDUCTING EXPERIMENTS 
ACCORDING TO A METHOD 

 
4.1 Levels and Selections of Variables 
 
A process variable includes both inputs and 
outputs, such as factors and responses. This 
type of experimental design is very popular since 
it provides ample information for screening 
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designs, is easy and cheap, and provides the 
information needed to proceed to multilayer 
response surface studies in the future as 
needed. The choice here is based on the DoE's 
goal, and it should ensure that the entire design 
serves its purpose. Therefore, the type and level 
of numeric and categorical factors are suitable 
(i.e. the values within the design) [13,14,15]. In a 
quantitative study, the independent variables 
(factors) influence the response variable. It is 
possible to identify components that may affect a 
response variable using a fishbone diagram. 
 

4.2 Design of Experimental Studies 
 

When selecting an experimental design, consider 
various aspects, such as the goals, the quantities 
of components and interactions to be 
investigated, the statistical validity, as well as the 
effectiveness. To better understand experimental 
design, two categories are available: a) 
Designing for screening; b) Designing for 
optimization. The type of experiment to be 
conducted depends on two factors: what the 
experiment's goals are and how many variables 
are being examined. There are several types of 
designs to choose from, including factorial, mixed 
and process-based designs. All replication, 
randomization, and blocking decisions should be 
considered. The factor-response function can be 
optimized, and the number of test samples can 
be determined after a screening design identifies 
significant factors [16]. 
 

5. HOW CAN EXPERIMENT DESIGN 
BENEFIT YOU? 

 

5.1 Treatment Comparison 
 

This involves contrasting different levels of a 
single element. Introducing statistics classes 
typically explain a range of different statistical 
studies applicable to this instance. 
 

5.2 Variable Screening 
 

As a result, fewer variables are used in an 
experiment. Whenever there are too many 
factors chosen to consider (more than 8) and 
they cannot be reduced based on current 
process information. Utilizing an innovative 
design taking advantage of fewer runs, it 
identifies as few variables as possible worth 
investigating. 
 

5.3 Variable Characterization 
 
To quantify each variable's impact, this step must 
be carried out. There are usually fewer variables 

to consider when using this type of analysis. 
Simple orthogonal designs are often chosen 
because they facilitate the development of a risky 
prediction model. 
 

5.4 System Optimization 
 
A process "ideal" requires determining how 
processes should be run. Alternatively, the goal 
is to determine the levels of each aspect that 
allow the process to produce the best results. In 
cases when the process is understood 
sufficiently and the factors affecting its outcome 
are minimal, the procedure is frequently carried 
out. These cases, which allow for the estimation 
of quadratic terms of second-order, are common. 
Usually, non-linear zones exist near an optimum, 
so this improves forecast accuracy. 
 

5.5 System Robustness 
 
By doing so, you need to determine what level of 
the fundamental factors reduces the 
unpredictability principally caused by the noise. 
As a result, it's only employed in situations with 
an exceptional level of crowd noise. On the other 
hand, it necessitates special protocols known as 
Robust Parameter Designs (RPD). By using this 
interaction between the main (control) and 
secondary (noise) components, these schemes 
employ the advantages of dual-component 
modeling [17]. 
 

6. CONCEPTS 
 
To increase the efficacy of experiments in 
industrial trials, three principles of experimental 
design are employed: randomization, replication, 
and blocking. 
 

6.1 Randomization 
 
In randomized experiments, noise factors 
(unwanted variations) like temperature 
fluctuations or fluctuations in power supply have 
an equal chance of affecting all levels of a 
parameter. All experimental materials are 
allocated at random, as well as the order in 
which they are conducted. This is critical for the 
following three reasons: 
 

a. The assumption that observations (or 
errors) are independent random variables 
is usually validated by randomization. 

b. It makes it possible to "average out" any 
additional factors; and 
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c. There may be a learning process involved 
or it may be important to have the 
experiments conducted in the correct order 
where the operation is repetitive. 
Systematic bias can be eliminated with 
randomization. 

 
However, Randomization cannot eliminate the 
variability resulting from uncontrollable variables, 
although it can help to "average out" their 
impacts. By blocking, we reduce or eliminate 
'nuisance' variability, such as batch variances in 
raw materials, that may influence the response to 
an experiment but are of no direct significance. In 
this way, the experimental error is smaller, and 
the variability caused by these factors is 
separated from the experimental error, allowing 
for more precise conclusions. 
 

6.2 Replication 
 
To estimate experimental errors and main and 
interaction effects more precisely, it includes 
repeating an experiment, all, or part of it, in 
random order. Rather than performing an 
experiment once and getting several 
measurements, replication involves repeating it 
under the same conditions. A probability density 
function can be utilized to explain the differences 
between two sample sizes, which may be used 
as a measure of statistical significance. Because 
the variance of the sample means is less than 
that of the individual observations, replication 
allows the researcher to acquire a more precise 
estimate of the influence of a factor in the 
experiment. Repetition of measurements 
however leads to an increase in variability, which 
is a consequence of the inherent variability of the 
measuring system or gauge [18]. 
 

6.3 Blocking 
 
To spread out the effect of changes in blocking 
factors, such as batch size, machine type, and 
time of day, it is the practice of grouping similar 
testing runs into blocks (or groups). All 
experiments should be managed to avoid 
confounding (confusions over which changes in 
the output are a result of changes in the block or 
factor levels). 
 

7. DESIGN OF EXPERIMENTS 
 
Historically, DoE has been an instrument that 
has contributed to improving product quality and 
reliability. Different industries are increasingly 
using DoE for their decisions, whether for new 

products or process improvements. 
Administration, marketing, hospitals, 
pharmaceuticals, the food industry, energy and 
architecture, and chromatography, among other 
applications, are among its uses. Models both 
physically and computer-based can be simulated 
using DoE. An experiment's design, analysis, 
and interpretation are part of a study's DoE. This 
type of applied statistics is often used to examine 
how changing the input variables (X’s) affects 
measuring the response variable (Y) in a system, 
process, or product. Using the DoE technique, 
variables are initially screened to determine 
those that have significant impacts on results 
(excipient kind, proportion, disintegration time 
(DT), etc.) [19]. Optimizing the procedures 
involves determining which are the best settings 
for each of the essential variables [20]. This 
research involves investigating how changes in 
mixture composition affect the mixture's 
attributes using mixture designs. Chemical, 
physical, and manufacturing stability are 
fundamental to product development and 
manufacturing. To ensure product safety and 
efficacy, different quality criteria must be fulfilled 
[21]. To ensure a targeted formulation effort, a 
target product profile (TPP) must be identified. In 
TPP (appearance), one frequently finds 
information about the formulation, methods of 
administration, maximum and minimum doses, 
and characteristics of pharmaceutical elegance. 
Formulation scientists are assisted by the TPP in 
developing formulation strategies as well as 
directed and efficient efforts. Developing a 
formulation requires many investigations after the 
TPP is clearly defined. DoE can be very useful to 
formulation scientists during all phases of the 
formulation process since it helps them make 
informed decisions. There are many important 
steps in this process, including product 
optimization, excipient compatibility, formulation 
and scale-up, and process characterization. A 
DoE may be generated and analyzed rapidly 
using appropriate statistical software. Statistical 
packages for this purpose can be found as both 
freeware and commercial software. Minitab, 
Statistica, Statistical Package for the Social 
Sciences (SPSS), Statistical Analysis 
System(SAS), Design-Expert, STATGRAPHICS, 
Prisma, and other well-known commercial 
packages are examples [22]. 
 
Several commercial software packages offer an 
intuitive interface and excellent output visuals, 
such as Minitab and STATISTICA. Using the. R 
(R is a free software environment for statistical 
computing and graphics) platform, Action 
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produces graphics using Excel and the R 
platform. Furthermore, Microsoft Excel can be 
used to quickly perform DoE design and analysis 
by utilizing the procedure and formulas provided 
in the next paragraph. Knowing how to use 
ANOVA and linear regression as statistical 
approaches is essential to do any DoE as 
mentioned above [23]. 
 

7.1 Advantages 
 
Compared with OFAT, DoE exhibit numerous 
advantages. A method to design experiments 
that maximize process knowledge while 
minimizing resource use is the experimental 
design strategy. As much as possible, provide 
accurate information. Find out how factors 
interact. Analyze each factor individually to 
determine its relative significance. Predicting how 
a process will behave within a design space [24]. 
 

OFAT is superior to DoE on several counts. 
Utilize the least number of resources possible 
with experimental design methodologies. Data 
should be provided as accurately and efficiently 
as possible. Investigate their interactions. Rank 
each variable according to its relative 
importance. Within the design space, allow for 
the prediction of process behavior. (CPPs) 
Critical Process Parameters and (CQAs) Critical 
Quality Attributes should be linked in a strong, 
casual manner. Pharmaceutical products must 
be optimized simultaneously as they include 
multiple CQA’s. Improve product or process 
resilience, i.e., make it less susceptible to 
uncontrollable factors and external events. 
Identify outliers inside the established 
experimental matrices to ensure their protection 
[25]. 
 

On the other hand, OFAT methods identify local 
sub-optimal zones by modifying one aspect at a 
time. It cannot study multiple factors at once or 
look at their interconnections, as this antiquated 
technique requires a lot of time. QbD applications 
cannot use OFAT due to its flaws. A key 
advantage of the DoE technique over OFAT 
experiments is how it clarifies the interaction 
between input elements. Input elements' effects 
on output are assessed by plotting interaction 
effects. 
 

By using this method, an existing design can be 
enhanced while reducing the number of 
experimental trials, analyzing, and optimizing the 
complex interaction between independent 
variables, and reducing the total amount of data. 
Therefore, compared to traditional experimental 

work, this statistical method is more practical 
because it incorporates interactions between 
variables and, therefore, displays the cumulative 
effects of the variables. In addition, several types 
of response surface design, such as the Central 
Composite, Box-Behnken, and Hybrid designs 
are sometimes useful in practice [10]. 
 

8. TYPES OF DoE AND DESIGN SPACE 
 

8.1 Implementing Design Spaces: 
Challenges and Barriers 

 

The challenges and obstacles associated with 
implementing Design Space include fear of 
revenge when expressing all the information and 
data collected. In terms of design, the "current 
state" of things is well understood by the 
industry, which must be associated with higher 
quality assurance criteria and stricter risk 
management. There is also the possibility of 
higher initial development expenses and a longer 
development period. Planned experiments are 
part of the experimentation strategy. As a result, 
the best method is typically used because it 
relies on guesswork to select input pieces. 
Although this may seem to be an excellent 
solution, it has no scientific basis and there is no 
way of knowing if it is the best. As another option 
for adjusting one variable at a time, the OFAT 
method is employed [26,27]. A level can be 
quantitative (e.g., temperature or voltage) or 
qualitative (e.g., coolant presence) (such as 
temperature). When a level changes in a factor, it 
generates a change in response. On the other 
hand, the OFAT approach can reveal only one 
causal effect, and the causal effects of multiple 
factors are generally not additive, indicating that 
they interact. This is called interaction when one 
component's effect on another component's 
reaction differs on different levels. A single 
element is changed in the OFAT approach 
without affecting all the other elements. A 
scientific study involves simultaneously varying 
multiple variables to detect the main effect and 
the interaction effect of the response variable. If 
factors have discrete values (levels), then the 
number of levels will define the experimental 
design. Full factorial experiments involve 
experimenting with all scenarios of component 
levels available. As opposed to the full factorial 
design, fractional factorial experiments only use 
a portion of the runs in the design [28,29]. 
 

8.1.1 Screening designs 
 

In addition to determining which ingredients to 
include in follow-up studies, these designs are 
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used to quantify the gradient impact of individual 
components. 
 
8.1.1.1 Taguchi designs 
 
For the analysis of parameter space, Taguchi 
uses fractional factorial arrays calculated from a 
DoE, also known as orthogonal arrays. Since 
Taguchi believes it is unnecessary to consider 
interactions between two design variables 
directly, he invented a method of tabulated 
designs that requires fewer experiments than a 
full factorial design. It is advantageous to be able 
to work in discrete variables. Taguchi ignores 
parameter interactions, which is a disadvantage. 
Using these pillars, we established a whole 
approach that simplifies the implementation of 
DoE in enterprises. Our goal is to offer 
businesses a straightforward engineering 
process that doesn't ignore the issue's 
complexity or statistics [30]. It is a great 
advantage that today's software is capable of 
aiding users in setting up and conducting 
investigations [31,32]. 
 
8.1.1.2 Plackett Burman design 

 
Regardless of the level of N runs, k=N-1 factors 
can be analyzed at each level of N, where N 
represents a multiple of four. Screening tests are 
typically done with resolution III designs. Due to 
the muddled nature of the alias structure, each 
significant influence is accompanied by partial 
effects of several two-factor interactions [33]. To 
determine the effect of both components on 
lactase production, Plackett-Burman statistics 
are commonly used. The 'n+1' test screens "n" 
variables in the two-factorial (i.e., 1 and +1) 
design for variables relevant to the production. 
Plackett-Burman matrices were used to examine 
all 11 characteristics in this study. Using high 
(+1) and low (1) measurements of each variable, 
the primary effect was determined [34]. Plackett-
Burman configuration is a useful tool for 
screening process parameters' effects on yields 
when using a response surface methodology. 
Using this method in conjunction with an 
optimization study can significantly reduce the 
number of experiments required in the following 
optimization study [35,36]. 
 

The QbD approach was used by Kuchekar et al., 
to develop polymeric micelles containing 
capecitabine. Plackett Burman screening design 
was used to identify the significant formulation 
and process variables like HP β-CD, 
ultrasonication time, and drug concentration. The 

factors were confirmed using the p-value less 
than 0.05 to evaluate robustness. The. Finally 
based on the findings the design space was 
confirmed. The Plackett Burman screening 
design was performed using STATGRAPHICS 
XVI [33]. 
 

8.1.2 Factorial design 
 

With factorial designs, a predetermined matrix of 
factors is used to alter process parameters 
simultaneously and deliberately. They are 
distinguished from mixed designs by their ability 
to alter each aspect separately. Several factors 
can be used in a factorial experiment. An 
experiment with only one component is a simple 
comparative experiment. In these cases, we 
analyzed the data using a t-test or an ANOVA 
[37]. Studies with more components have more 
possible combinations as well. A 2-level design 
with 8 variables has 256 combinations, which 
makes constructing and analyzing them 
challenging. An experiment requiring multiple 
factors requires a lot of resources, supplies, and 
time. A second challenge with multiple factorial 
designs is maintaining experimental conditions 
across many trials. To avoid the issues 
associated with multiple factor factorial designs, 
they may be designed as Full Factorial Design 2k 
or Fractional Factorial Design 2kp, depending on 
the circumstances [38]. This example employs a 
full factorial that consists of 2 levels, k factors, 
and p fractions. Factorial therapies are based on 
a combination of factors.  
 
8.1.3 Full factorial design 
 
They show all possibilities of combining the 
levels of each element with those of the others. 
Multiplying the number of levels of each factor by 
the number of levels of each factor determines 
the number of experimental runs. It is especially 
valuable to experiment with two levels of 
components (2k) as it is extremely efficient. Full 
factorial designs with two levels offer the greatest 
power for screening experiments since they allow 
one to study the principal effects of the input 
variables and their interactions on the output 
responses [39,40]. There are 2k experiments 
needed for full factorial designs with two levels, 
where k is the number of factors to be 
investigated.  In this study, two levels of factoring 
are used. An experimental design with two levels 
always places all input elements at the same 
level.  
 

Kuchekar et al. developed diltiazem 
hydrochloride chronotherapeutic tablets using 32 
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full factorial designs with dependent variables 
selected as t10%, t25%, t75%, and t90% of the 
cumulative drug. The concentrations of 
independent variables, xanthan gum, and 
concentration sodium alginate were varied to 
check the impact on the selected responses. The 
study concluded that the drug release pattern 
changed by the selection of independent 
variables. DESIGN EXPERT was used to 
perform the 32 full factorial designs [41]. 
 

8.1.4 Fractional factorial design 
 

Usually, 12 or 1=4 are the fractional factorial 
designs, which are a subset of full factorial 
designs. The screening method is frequently 
used when there are more than 4 or 5 
components. They are unable to decipher major 
effects and interactions due to confounding or 
aliasing. A design's "resolution" refers to its 
ability to assess effects and interactions without 
being confounded. Major effects do not alias to 
other main effects in Resolution III designs, but 
they may alias with two-factor interactions, some 
of which may alias to each other. The presence 
of two-factor interactions that adversely affect the 
answer can be misleading [42]. A major effect in 
Resolution IV does not alias into another main 
effect or a two-factor interaction, but instead, it 
may alias into a three-factor interaction. 
Interactions between two factors are also 
aliased. Due to their clear principal effects, they 
are a good choice for screening. Compared to 
full factorial designs, Resolution V (or higher) 
designs are less expensive and take up less 
space. There is no aliasing of principal effects or 
interactions between two factors. To refer to 
these latter interactions, you could use the term 
"three-factor interactions.". If interactions 
between three factors (or higher) are not 
significant or unlikely, both main effects can be 
estimated. With decreasing design resolution, it 
becomes increasingly difficult to understand the 
results [43]. For factors with just two levels 
apiece, even a full factorial can have a very large 
number of runs. To minimize the number              
of runs, it is possible to select a fraction of the 
whole factorial, such as half or a fourth. 
Fractional factorial designs are the same as 2k-p 
factorial designs. What they are, however, is the 
1/2p fraction of a 2k factorial experiment. 
Factorial fractionation can cause confounding. 
Therefore, because the resolution measures                    
how confused the design is, it is a very important 
factor. The ease of use and high inductive         
power of factorial designs make them useful 
[44,45]. 

8.1.5 Response surface methodology 
 
An empirical model is developed by utilizing 
response surface methodology (RSM). 
Experiments designed meticulously have the 
goal of maximizing an output variable (response) 
influenced by numerous independent variables 
(input variables) [46]. The experimental analysis 
consists of a series of tests, known as Runs, that 
are used to test the effects of modifications to 
input variables on output responses. Before 
moving on to numerical experiment modeling, 
RSM was initially designed to model 
experimental response [47]. The difference is in 
the type of error caused by the response. While 
measurement error can produce inaccurate 
results in physical experiments, numerical noise 
occurs in computational experiments as the 
result of inaccuracies in iterative processes, 
round-off errors, or discrete representations of 
continuous physical phenomena. It is supposed 
that RSM generates random errors [48]. 
 
8.1.5.1 Centre composite design 
 
Central composite designs (CCDs) are among 
the most popular as they require fewer 
experiments and use five levels of each input 
component compared to complete factorial 
designs with three levels. These aspects of the 
design are the factorial points of the design, the 
axial points of the design, and the center point. 
An axial (or star) point is necessary to estimate 
second-order effects based on an axiomatic 
design (the cube's corners). Response surface 
approaches are the most common [49]. Alpha 
value 1.0, as measured by a face-centered 
central composite design, can alter the number 
of levels for each factor in a typical design. There 
are only three levels in each aspect of face-
centered design. A quadratic model is estimated 
by using this architecture, which does not 
depend on missing data [11,50]. CCDs 
composed of composite factorial data (CCD) 
include point factorial data, axial data, and center 
data [51.52]. 
 
8.1.5.2 Box Behnken design 
 
As a kind of multilevel fractional factorial design, 
Box-Behnken can simulate first and second-
order response surfaces. Three-level full factorial 
designs are less efficient than these, especially if 
there are many input variables. Design that 
utilizes three levels per element and fewer trials 
per element than the central composite design, 
called Box Behnken Design (BBD) [53,54]. Axial 
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points and corners of the design space are 
eliminated (or extreme factor combinations are 
bypassed) to address many of the shortcomings 
of central composite designs. In addition, this 
design is completely rotatable, so all its 
equidistant sites from the design center will 
display the same prediction variance. With this 
design, fewer experiments are conducted for an 
equal number of factors than those with a 
composite central design. Due to these factors, 
BBD outperforms central composite designs [55]. 
It is a second-order, incomplete three-part 
factorial, rotatable, and not like conventional 
fractions. BBD is a result of combining blocks 
with factorials. In q factor block designs of size 
two, find an incomplete block design for q 
treatments [56,57,58,59]. 
 
Pawar et al. [60] studied the evaluation of Gellan 
Gum, sodium bicarbonate, and calcium chloride 
concentration, three independent variables, using 
a Box Behnken factorial design to determine the 
floating lag time and t50 (time required for 50% 
drug release). The BBD was performed using 
SYSTAT 13 and was subjected to multiple 
regression analysis.  
 
8.1.6 Mixture designs 
 
8.1.6.1 Simplex lattice 
 
One of the widely used designs. In this design, 
factors with the same ranges are considered. To 
generate the design, it imposes an equal 
distance grid over the design area. To detect its 
absence, this design needs to be improved. 
 
8.1.6.2 Simplex centroid 
 
In addition to a simplex-lattice design, a simplex-
centroid design may be used. It is applicable if all 
components have the same range of values 
(between 0 and 1) and no constraints limit the 
design area. Every run has a center point 
containing equal amounts of all ingredients 
[61,62]. 
 

9. CONCLUSION 
 
Finally, statistical thinking and knowledge 
management are useful tools in pharmaceutical 
development because they support operational 
excellence within the QbD framework. It is 
projected that DoE's use trend will slow down in 
the short term for existing scientific domains, but 
it will expand very quickly to other areas of 
science. Factorial trials help develop or enhance 

systems, processes, and products by making 
decisions that are informed and accurate. Design 
an experiment, conduct it, collect the data, and 
analyze the results. It has become more popular 
in recent years to optimize formulations. The 
optimization would become a much more popular 
development tool. In all phases of product 
development, from pre-formulation through 
clinical trials and beyond, DoE is a significant tool 
for formulation scientists. A quality breakthrough 
requires persistence, patience, perseverance, 
and a thirst for knowledge in computer and 
statistical fields. Optimizing products reduce the 
number of trials, reducing the cost and time 
spent on product development. 
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