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ABSTRACT 

This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based 
on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three 
rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to 
generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. 
The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database 
are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respec- 
tively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of 
the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is 
demonstrated by two case studies. 
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1. Introduction 

With the rapid development of economy, the efficiency 
and safety of transportation are paid much more attention 
than ever before. Nowadays, urban subway has already 
been one of the most important means of transportation, 
especially, in Beijing, Shanghai, New York, London and 
some other big cities all over the world. However, as the 
urban subways’ speed increasing, a higher requirement 
for vehicles’ reliability and security has been put forward. 
The fault isolation system for the Light Rail Vehicles 
(LRVs) plays an important role in guaranteeing that 
trains run safely with high speed. 

Suspension systems for light rail vehicles (LRVs) are 
used to support the car body and bogie, to isolate the 
forces generated by the track unevenness at the wheels, 
and to control the attitude of the car body with respect to 
the track surface for improving ride comfort. As a very 
important part of railway vehicle, the reliability of the 
suspension system is directly related to the whole vehicle 
security. Although the suspension systems are reliable, 
they are subjected to some modes of unexpected faults.  

As we all know, for some small but key components of 
suspension system, such as springs and dampers, the per- 
formance will significantly degrade in performance after 
one or two years. Once faults which are even very small 
and insignificant in LRVs suspension system occur, it 
can lead to serious accidents when the train is traveling. 
Therefore, it is very imperative to immediately detect and 
isolate the faults of vehicle suspension system after the 
faults occur. 

Fault diagnosis for LRVs suspension system has re- 
ceived some attention in recent years. Some studies on 
the condition monitoring of railway vehicle and suspend- 
sion systems have been reported in [1-3] and the refer- 
ences therein. In [3], the fault detection and the isolation 
issue of railway vehicle lateral suspension system are 
concerned, where a Kalman filter-based method has been 
proposed for detecting and isolating faults in railway 
vehicle suspension system based on the derived vehicle 
dynamic model. The method is computationally efficient 
and responses to the abrupt fault rapidly, thus suitable for 
applying online to detect and isolate the abrupt or hard 
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faults, which usually need to be drawn immediate atten- 
tion. However, the paper assumed that the vehicle pa- 
rameters are known precisely and the simulation is still 
based on a simple linear model. 

Sensors are used extensively in condition monitoring 
and diagnosis system by providing information of the 
systems. However, due to the complexity of environment, 
limitation of sensor performance and imperfection of 
information acquisition technique, partial information 
acquired by single sensor is usually uncertain. As a result 
of these shortcomings, a single sensor has limited capa- 
bilities to resolve uncertainties and limited ability to pro- 
vide consistent isolation results. In [4], many effective 
methods in preprocessing data have already discussed. In 
addition, five methods for combining this uncertain in- 
formation commonly used in fault diagnosis are those 
presented by Bayesian, Fuzzy, Dempster-Shafer (D-S) 
evidence, Neural Network (NN) and Integrated informa- 
tion fusion theories [5]. Moreover, the characteristics and 
limitations of these information fusion methods for fault 
diagnosis are analyzed. 

In this paper, isolate issue of fault of suspension sys- 
tem in LRVs based on multi-sensor information fusion is 
investigated. Nine sensors are equipped on the three roll- 
ing stocks. At first, an innovative approach for the fault 
isolation of Light Rail Vehicle (LRV) suspension system 
based on the Dempster-Shafer (D-S) evidence theory is 
studied. This approach mainly uses the Eros, which is 
applied for similarity measurement in the fault feature 
database. In the first step, a fault feature database for the 
LRVs suspension system is built. By using the fault de- 
tection method in our precious work [6], a Kalman filter 
is applied to generate the residuals for fault isolation, and 
then a fault feature database in the frequency domain is 
built in which some typical suspension system failures  

 

are included. When there is a fault detected, Fast Fourier 
Transform is applied to the residuals to obtain the ampli- 
tude-frequency fault feature. The second step is to deter- 
mine the belief function assignment of each sensor cor- 
responding to every fault in the fault feature database 
using Eros similarity measure for frequency spectrum. 
Finally, belief function assignment fusion by using Dem- 
pster-Shafer evidence theory is carried out. 

In order to increase the accuracy, we put forward the 
other effective approaches based on D-S evidence theory. 
In the first step, the data information of time domain and 
frequency domain, acquired from these sensors, are used 
for obtaining the feature information, which includes 
mean, standard deviation, skewness and kurtosis in time 
domain and frequency centre, root mean square fre- 
quency and root variance frequency in frequency domain. 
Similarly, a fault feature database in the time and fre- 
quency domain is built in advance in which some typical 
suspension system failures are included. Secondly, the 
Basic Belief Assignment (BBA) for each fault feature is 
determined by using the norm distance measurement. It 
is applied to obtain the similarity between the fault fea- 
ture of the new occurred fault and the one recording 
faults in the database. Finally, the obtained seven fault 
features (BBAs) are combined by D-S evidence theory 
for enhancing the isolation accuracy. 

2. LRV Suspension System 

The conventional railway vehicle suspension systems are 
depicted in Figure 1 [7]. There are 2 degrees of freedom 
(DOFs) for each car body associated with bounce and 
pitch motions and one DOF for each bogie associated 
with its bounce motion. Consequently, a 9-DOF dynamic 
model is built. 
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Figure 1. Multi-body dynamic model of the LRV. 
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The dynamical equations of the suspension system for a vehicle moving on a straight track are derived as follows: 
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Here, 1 1,y   and 4  are the vertical displacement of 

the center of gravity (c.g.), pitch angle of the c.g. of the 
first power car body and the vertical displacement of the 
c.g. of the first power bogie, respectively.  is the track 

vertical profile (track irregularity) for the first power 
bogie. The rest symbols have the similar meanings to the 
relative vehicles.  

y

7y The state-space of the suspension systems are as follows: 
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As the space is limited, the more details about the 

state-space can be found in [6], as well as the vehicle 
parameters. The problem considered in this paper is that 
how to isolate different faults in damping and spring and 
different fault magnitudes between 0% and 100% coeffi- 
cient reduction of LRVs suspension system. 

3. Fault Isolation Algorithm 

The main task for the fault isolation in this paper is to 
isolate different faults and magnitudes based on D-S 
evidence theory. Nine sensors equipped on three rolling 
stocks are used to acquire information for detecting the 
cause of malfunction. In order to isolate different faults 
and magnitudes effectively, the following four processes 
are required. These processes are database foundation, 
similarity measurement, information fusion and decision- 
making. The proposed fault isolation algorithm for LRVs 
suspension system is shown in Figure 2. 

In the first step, two databases are built. The residual is 
generated by a fault detector (an observer or Kalman 
filter, etc.). The second step is to determine the BBAs of 
D-S evidence theory by using the Eros and norm distance 
measurement respectively. Thirdly, the obtained BBAs 
are combined by D-S evidence theory for enhancing the 
isolation accuracy and the fusion BBA m is obtained. 

Finally, based on the principles of decision making, the 
fault isolation decision is made. The one in the fault da- 
tabase which has the biggest belief function assignment 
is the most possible occurred fault. 

3.1. D-S Evidence Theory and Principles for  
Decision Making 

3.1.1. Belief Function Assignment and Belief Function 
Define the frame of discernment  as domain of evi- 
dence theory, and it includes finite basic elements 



 0 1, , , iu u u . These elements are defined as basic fault 
model in the fault detection. In addition, events of   
are mutually exclusive. When the frame of discernment 
  is determined, the belief function  is defined as a 
mapping of the power set 

m
   to a number between 0 

and 1 [8], i.e. 

   
   

 

: 0,1

0, 1
A

m

m m
 

  

A          (1) 

where,   is a null set,  expresses the degree of 
confidence for the subset 

 m A
A . In this fault isolation of 

LRVs suspension systems, it can be considered as a be-
lief function value with respect to a certain fault. 
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Figure 2. Flowchart of the proposed fault isolation algo- 
rithm. 

3.1.2. D-S Evidence Combination 
Based on the rules of D-S combination, suppose 1 2  
are two belief function assignments responding to the 
same frame of discernment , 1 2  and 
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where C represents a basic probability belief associated 
with conflicts among the sources of evidence. It is de- 
termined by summing the products of belief function 
assignment of all sets which their intersection is null. The 
denominator 1  C in Equation (2) is a normalization fac- 
tor. The larger the value of C is, the more conflicting 
are the sources, and the less informative is their combi- 
nation. 

The produced belief function m(A) is the value of be- 
lief function responding to all fault models through D-S 

evidence combination. Note that 1 2 , which 
represents the combination of m1 and m2, and carries the 
joint information from the two different sources. The 
above rule of evidence combination also satisfies the 
following relationship: 

m m m 

1 2 2m m m m1               (4) 

   1 2 3 1 2m m m m m m     3



      (5) 

3.1.3. Principles for Decision Making 
Getting the fusion belief function assignment m, the fol-
lowing is to make decisions for isolating faults based on 
obtained combination values. The basic principles for 
decision making are shown below [8-10]. 

1) The target type of decision should have the maxi- 
mum belief function assignment; 

2) The difference between the target type and other 
types of belief function assignment should be larger than 
a certain threshold. 

3.2. Eros: Extended Frobenius Norm for  
Similarity Measurement 

The singular value decomposition  of a matrix is 
the factorization 

SVD

TA U V    

where U and V are column-orthonormal matrixes,   is 
a diagonal matrix of the eigenvalues i  of A. The ei- 
genvalues and the corresponding eigenvectors are sorted 
in non-increasing order. V is called the right eigenvector 
matrix. 

Now we introduce a similarity measure of fault feature 
datasets. Let A and B be two fault feature items of size 

Am n  and Bm n , respectively. Let AV  and BV  be 
two right eigenvector matrices by applying SVD to the 
covariance matrices, AM  and BM , respectively. Let 

 1  and , ,A naV a  1, ,B n , i  and i  are 
column orthogonal vectors of size n. The Eros similarity 
of A and B is then defined as 

V b b a b

 
1 1

, ,
m m

i i i i i
i i

Sim A B a b cos  
 

    

where ,i ia b  is the inner product of i  and ib , a   
is a weight vector which is based on the eigenvalues of 
the fault feature dataset. Recall that by applying SVD to 
the covariance matrices, we obtain not only the principal 
components but also the eigenvalues that represent the 
variances for principal components. For example: 

T
A A A AM U V   

where 

 1 2, , ,A nV a a a   

 1 2diag , , ,A A A An      
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  can be obtained by performing the following equa- 
tions: 

1

m

Ai Ai Aj
j

  


    
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m

Bi Bi B
j
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cos i  is the angle between i  and ib . The range of 
Eros is between 0 and 1, with 1 being the most similar. 

a

This algorithm measures the similarity between two 
fault feature applying the right eigenvector matrices that 
contain the principal components and associated eigen- 
values. Using the right eigenvector matrices for similar- 
ity computation has the following advantages: the size of 
the right eigenvector matrices are fixed at  and it is 
significantly small compared to the number of variable, n, 
for fault feature items. 

n n

3.3. Feature Extraction 

The feature extraction of the information is a critical 
initial step in fault isolation. Its accuracy directly affects 
the final isolation results. In this paper, the statistical 
information of time domain data and frequency domain 
data are used for obtaining the feature information from 
the sensors. Seven features are considered. They are 
mean, standard deviation, skewness, kurtosis in time do- 
main and frequency centre, root mean square frequency 
and root variance frequency in frequency domain. 

3.3.1. Features in Time Domain 
These feature described here are termed statistics because 
they are based only on the distribution of signal samples 
with the time series treated as a random variable. In most 
cases, the probability density function (pdf) can be de- 
composed into its constituent moments [11]. If a change 
in condition causes a change in the pdf of the signal, then 
the moments may also change; therefore, monitoring 
these can provide diagnostic information. The moment 
coefficients of time-waveform data are calculated by 

1

1 N
n

n
i

m
N 

 ix                (6) 

where xi is the ith time historical data, and N is the 
number of the data points. 

The four time domain features, mean C1, standard 
deviation C2, skewness C3 and kurtosis C4 can be com- 
putered using the following relationships: 
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The above four time domain statistical features index, 

which can’t be considered in isolation, need to confirm 
each other in fault diagnosis. 

3.3.2. Features in Frequency Domain 
Frequency domain is another description of a signal. It 
can reveal some information that can’t be found in time 
domain. In this paper, frequency center FC, root mean 
square frequency RMSF, and root variance frequency 
RVF are introduced as follows. 
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where s(f) is the signal power spectrum. FC and RMSF 
show the position change of main frequencies, RVF de-
scribes the convergence of the spectrum power. 

3.4. Distance Measurement 

Let 

 
 

1 2 9

1 2 9

i i i

i i i

A a a a

B b b b








            (9) 

where A presents the ith feature vector of one fault in the 
fault feature database; B presents the ith feature vector of 
the new occurred fault. 9 is the number of sensors. 

Intuitively, the more similar is A to B, the more pro- 
bable is the measuring fault in the database. Conversely, 
the dissimilar is A to B, the less probable is the measur- 
ing fault. There are many measurements for quantifying 
the distance between the occurred fault features and the 
fault prototypes. We propose to use the following method 
to measure the distance: 

   
1

9 22
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1
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j

d a b i m
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 
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where dim is the distance of the ith feature between A and 
B. 16 is the number of the faults in the database, and A is 
the one of that. The distances of features in the feature 
database between all faults and new occurred fault can be 
captured in a matrix D: 

11 12 1
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d d d
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Each row in matrix D represents the distance of a fea- 
ture between the new occurred fault and all recorded 
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faults in the database; each column of D is the distance of 
seven features between one fault in the database and the 
new occurred fault. M is the number of the considered 
faults in the database. The smaller is the distance im  in 
the matrix D, the more probable is the mth fault. Define 

d

1im imp d   as the similarity of features and expressing 
in a matrix P after normalizing, we have: 

11 12 1 1

21 22 2 2
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p p p p

p p p p
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p p p p
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p i M
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where pk can be seen as the BBAs of the kth features to 
all the recorded faults in the database. Therefore, the 
bigger is the similarity pim in the matrix P, the more prob- 
able is the mth fault. 

4. Case Study 

In this section, the application of the D-S evidence theory 
to the fault isolation for the LRVs is presented. Firstly, in 
order to test the effectiveness of information fusion, the 
same fault magnitude between the fault database and test 
fault database are tested in the application. However, in 
reality, an arbitrary fault magnitude between 0% and 
100% coefficient reduction can come forth. So the dif- 
ferent fault magnitudes are studied in the improved ap- 
plication case. 

4.1. Former Application Case 

As presented in Section 2, the considered LRVs suspen- 
sion system has nine outputs from nine sensors. A Kal- 
man Filter is applied to generate the residuals. When a 
fault occurs in the system, the residuals have some obvi- 
ous changes in the time domain. These changes (fault 
feature in the time domain) are more obvious in fre- 
quency domain. Therefore, in this paper, the datasets 
with amplitude-frequency information in 9 dimensions, 
which obtained by performing Fast Fourier Transform on 
the residuals, are utilized as the multivariate fault signa- 
ture series for similarity measure. In this case, the Eros is 
applied for similarity measurement. 

4.1.1. Fault Feature Database 
Eight representative component faults are considered in 
this paper and their fault feature database in the fre- 
quency domain are built as shown in Table 1. They are 
the secondary damper  failure in the former 
power car, the secondary damper  failure in the 
later power car, the secondary damper  failure in 

 1 1c p
 1 3c p

 2 2c t

Table 1. Fault classification. 

Scenario Fault Location Fault magnitude

F0 No fault   

F1 c1 p1 100% 

F2 c1 p3 100% 

F3 c2 t2 100% 

F4 c3 p1 100% 

F5 k1 p1 100% 

F6 k1 p3 100% 

F7 k2 t2 100% 

F8 k3 p3 100% 

F9 c1 p1 33% 

F10 c1 p3 33% 

F11 c2 t2 33% 

F12 c3 p1 33% 

F13 k1 p1 33% 

F14 k1 p3 33% 

F15 k2 t2 33% 

F16 k3 p3 33% 

 
the trailer car, the primary damper  failure in the 
former power car and all the spring 

 3 1c p 

 1 1 1 3 2 2 3 1, , ,k p k p k t k p  

failures related to the same vehicles. In addition, as 
shown in Table 1, two cases about the fault magnitude, 
which are 33% and 100% coefficient reduction in these 
components, have been considered. Moreover, in this 
fault feature database, the normal condition is concluded. 
So there are 17 faults in this database in total. In addition, 
the faults and fault magnitudes in the test fault database 
are the same with the ones in the fault feature database. 

4.1.2. Fault Isolation Based on D-S Evidence 
After applying the Eros algorithm, the similarities be- 
tween the new fault in the test database and all faults in 
the fault feature database can be obtained. Note that, it is 
necessary to calculate the similarity three times in terms 
of nine sensors in the same vehicle. Let the new normal- 
ized similarities between the new fault and all faults in 
the fault feature database be the belief function assign- 
ments  1 2 3, ,m m m m . To improve the accuracy of 
fault-identification, the obtained belief function assign- 
ments are fused by using D-S evidence combination the- 
ory. Next, let’s analysis and calculate the fusion belief 
function assignment of fault 1F  as an example. 

Here, fault 1F  is selected as the new fault so that it is 
convenient to verify the accuracy of the results. Based on 
the obtained normalized similarities of three groups of 
sensors in Table 2, according to Equation (5), firstly, the 
former two rows of information are combined to achieve 
a new belief function value , and then by using the n
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Table 2. Fusion results based on D-S evidence theory of the new occurred fault F1. 

Assignment belief function (×10−2) Fault 
model 

Sensors 
and  

fusion F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

m1 6.05 7.33 5.44 3.99 6.35 6.97 5.99 4.68 6.01 6.51 5.83 5.17 6.10 6.32 6.16 5.50

m2 5.88 5.95 5.72 5.91 5.91 5.94 5.85 5.91 5.89 5.91 5.85 5.89 5.89 5.91 5.89 5.88

m3 7.02 9.83 0.38 0.94 9.75 9.79 1.73 5.19 5.95 9.75 1.94 5.61 8.65 9.32 4.76 7.07
1F  

fusion 6.86 11.8 0.33 0.61 10.1 11.2 1.67 3.94 5.78 10.3 1.82 4.68 8.52 9.55 4.74 6.26

 
same method, fusing the last row and the obtained  is 
to acquire the final fusion belief function assignment . 
Therefore, in the first step, C can be obtained using 
Equation (3): 

n
m

       

           
   

1 2 1 2

1 0 2 1 1 0 2 2 1 0 2 16

1 16 2 15 0.9412

i j i j

i j i j
E E F F

C m E m E m F m F

m F m F m F m F m F m F

m F m F

 

 

   

  

 
 





 

Then using Equation (2), the following fusion result 
can be obtained: 

       

     
0

0 1 2

1 0 2 0

1

1 0.0605

i j

i j
F F F

n F m F m F C

m F m F C



 

 





 

In the second step, the third row and the new obtained   
are fused according to the Equations (2) and (3) in the 
same way, and then the final fusion results can be ob-
tained: 

   




0 16, ,

0.0686,  0.1176,0.0033,0.0061,0.1004,

0.1111,0.0167,0.0394,0.0578,0.1029,0.0182,

0.0468,0.0852,0.0955,0.0474,0.0626,0.0207

m m F m F   




 

Finally, based on the principles of decision making, 
the decision about the isolation result is made.  1m F  is 
the maximum of the belief function assignments. So the 
fault 1F  is considered as the most possible occurred 
fault. Hence, this obtained result agrees with the fact and 
the accuracy of the method is verified. For other types of 
fault, the same method is applied to obtain the results. As 
space is limited, only one fault is showed in Table 2. 

From the final results, some conclusions are given 
following. Firstly, the isolation results, obtained by sin- 
gle group of sensors, are consistent with the fusion isola- 
tion result, such as faults 1 2 3 5 7, , , ,F F F F F

, , , ,

. Moreover, 
they achieve exact isolate fault. However, the values ob- 
tained by single group of sensors are close to each other 
so that they can’t isolate faults effectively. Secondly, for 
example, 4 8 10 11 12 13 14 15, , , ,F F F F F F F F  faults the fu- 
sion isolation results are accurate to isolate fault, while 
the results from single group of sensors cannot achieve 

this result. Finally, for the three faults 6 9 16, ,F F F  the 
fusion isolation results are not consistent with the actual 
occurred faults due to uncertainty and incompleteness of 
information, and the error of the Eros algorithm. How- 
ever, the next possible occurred fault in the fusion isola- 
tion results is the actual fault among these inconsistent 
faults. In general, this method, multi-sensor information 
fusion based on the D-S evidence theory and Eros, is 
effective and accurate on fault isolation that not only 
reduces the uncertainty of fault isolation substantially, 
but also effectively improves the accuracy of recognition 
to the fault model. 

4.2. Further Application Case 

From the point of reality, it is imperative to build the 
other test fault database, which is different from the mag- 
nitudes in the fault feature database, since an arbitrary 
fault magnitude between 0% and 100% coefficient re- 
duction can come forth. In addition, in order to improve 
the accuracy of the Eros algorithm, in this further appli- 
cation case, the norm distance is applied for similarity 
measurement. 

4.2.1. Fault Feature Database 
The types of fault in the database are the same with the 
faults in the former case, as shown in Table 3, two cases 
about the fault magnitude, which are 25% and 50% coef- 
ficient reduction in these components, have been consid- 
ered. However, in reality, an arbitrary fault magnitude 
between 0% and 100% coefficient reduction can come 
forth. They are classified as small fault (<25%), middle 
level fault (<50% and >25%) and sever fault (>50%). For 
demonstrating the effectiveness of the D-S evidence the- 
ory to the LRVs system, here, the considered new oc- 
curred fault types are the same with the recorded faults in 
the database, while the fault magnitudes are different, 
which are 40%, 60% and 80% coefficient reduction. Due 
to the space is limited, only isolation results of the one 
case which is 40% coefficient reduction are listed in Ta- 
ble 4. 

4.2.2. Fault Isolation Based on D-S Evidence 
From the whole final results, all fusion results can get exact 
isolation results. Therefore, this fault isolation method, 
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Table 3. Fault classification. 

Scenario Fault Location Fault magnitude 

F1 c1 p1 25% 

F2 c1 p1 50% 

F3 c1 p3 25% 

F4 c1 p3 50% 

F5 c2 t2 25% 

F6 c2 t2 50% 

F7 c3 p1 25% 

F8 c3 p1 50% 

F9 k1 p1 25% 

F10 k1 p1 50% 

F11 k1 p3 25% 

F12 k1 p3 50% 

F13 k2 t2 25% 

F14 k2 t2 50% 

F15 k3 p3 25% 

F16 k3 p3 50% 

 
Table 4. Fusion results based on D-S evidence theory of the new occurred fault C1P1_40. 

BBA( 210 ) Test 
fault 

model 

Sensors 
and 

fusion F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 

m1 6.40 6.46 6.77 7.65 6.26 6.36 6.17 6.16 6.01 5.85 6.02 5.21 6.05 5.95 6.02 6.65

m2 9.06 0.587 6.17 5.22 5.97 3.96 6.29 6.69 6.85 9.22 5.95 6.31 6.16 6.12 5.95 4.20

m3 8.59 16.7 6.17 5.85 5.36 1.47 6.30 6.56 6.29 6.37 4.96 6.30 6.16 6.06 4.96 1.94

m4 7.09 7.27 6.97 5.80 6.05 0.63 6.93 6.92 7.33 7.99 6.77 7.10 6.94 6.94 6.77 2.50

m5 22.2 9.58 5.51 4.42 0.70 0.32 6.71 8.95 6.76 8.22 4.95 5.09 4.88 2.95 4.95 3.84

m6 17.4 11.2 5.18 3.92 0.74 0.45 7.25 9.74 8.07 11.8 4.59 5.29 3.94 2.44 4.59 3.47

m7 22.8 9.55 5.47 4.42 0.68 0.31 6.63 8.87 6.65 8.12 4.97 5.06 4.75 2.88 4.97 3.88

c1 
p1 

_40 

fusion 74.6 11.3 0.67 0.25 0.00 0.00 1.31 3.48 1.65 5.18 0.33 0.48 0.35 0.08 0.33 0.02

 
based on the D-S evidence theory and distance meas- 
urement, is effective and accurate on fault isolation. 

In addition, as the space is limited, other two cases 
aren’t listed, which are 75% and 100% coefficient reduc- 
tion in these components; besides, for the occurred faults, 
two cases about the fault magnitude, which are 60% and 
80% are corresponding. The smaller range interval is 
chosen, the more precise isolation results are obtained. In 
summary, the results show that the isolation method can 
overcome the uncertainty of information and improve the 
accuracy of fault isolation in the fault type and fault pat- 
tern for LRVs suspension systems. 

5. Conclusion 

This paper proposes a new method to isolate faults of 
LRVs suspension system and its further case. A Kalman 
filter is applied to generate the residuals for fault isola- 
tion. A fault feature database is built based on the fault 
features in the time domain and frequency domain. The 

Eros and norm distance measurement are used to acquire 
the similarities between the fault feature of the new 
occurred fault and the one recording faults in the database. 
These calculated similarities are converted in the form of 
BBAs, which are then combined using D-S evidence 
theory. In general, this method, multi-sensor information 
fusion based on the D-S evidence theory and distance 
measurement, is more effective and accurate on fault 
isolation in the fault type and fault magnitude for LRVs 
suspension system, which not only reduces the un- 
certainty of information, but also effectively improves 
the accuracy of recognition to the fault type and fault 
magnitude when compared to the former application case, 
in which the similarity of features is obtained by using 
Eros method. 
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