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Abstract: Recently, asymptotic estimates for the unimodular Fourier multipliers ¢/*(P) have been studied
for the function a-modulation space. In this paper, using the almost orthogonality of projections and some
techniques on oscillating integrals, we obtain asymptotic estimates for the unimodular Fourier multiplier

) g
e'I=8)2 on the a-modulation space. For an application, we give the asymptotic estimate of the solution for

the Klein-Gordon equation with initial data in a a-modulation space. We also obtain a quantitative form
about the solution to the nonlinear Klein-Gordon equation.
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1. Introduction

S uppose .7 (R") and .#’(R") be the Schwartz space of all rapidly decreasing smooth functions and
tempered distributions, respectively, and the Fourier transform .#(f) = f and the inverse Fourier
transform .Z " 1(f) = f of f € .7(R") is

~

(&) = - f(x)efix-édx, and f(x) = (2711)” /Rn f(r;’)ei"'édg.

We define the Fourier multiplier is a linear operator Hy, defined on the set of test functions f on R" is
defined by

Hf(0) = g [, m@F @0z

The function y is called the symbol or multiplier of H,. Note that the Fourier multiplier operator H, can be
extended in the distribution sense with 1 € .%/(R") by H,f = Z ' (uf) = (F'u) = f, forall f € 7 (R").

A fundamental question in the study of Fourier multipliers is to relate the boundedness properties of H,
on certain function spaces to the properties of the symbol p.

In this paper we will primarily focus on a particular Fourier multiplier, the unimodular Fourier multipliers,
defined by the symbol of the type u(¢&) = ¢*(¢), for real-valued functions A. They arise when one solves the
(half) Klein-Gordon equation

idpu + (I — A)gu =0, when (t,x) € Ry xR”
u(0,x) = up(x), x € R",

4 B ) g
where one has the formula solution u(t, x) = <e’t(1A) : uo) (x). Here A = A, is the Laplacian and ¢/f(/=2)2

is the unimodular Fourier multiplier with the symbol etHE")2 - The particular interest in studying this
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Klein-Gordon type equation is by understanding the boundedness properties of the unimodular Fourier

multiplier ¢#!(!=2)2 will provide insight to the behavior of the solution to the Klein-Gordon equation

opu+ Iu—Au =0, when (fx) € Ry xR",
u(0,x) = up(x), x € R",
0:1(0,x) = uy(x), x € R™.

Further, to understand the behavior of the solution to the Klein-Gordon equation, we need to understand
. 1
the behavior of the Fourier multiplier Ok (t) with symbol M
(1512
Unimodular Fourier multipliers generally do not preserve any Lebesgue space L?, except for p = 2. Thus
the LP-spaces are not the appropriate function spaces for the study of unimodular Fourier multipliers. Thus
we will focus on the function space a-modulation space, which is a generalization of the modulation space and
Besov space.
[1] used the almost orthogonality of projections and some techniques on oscillating integrals to find
B
bounded results for the unimodular Fourier multiplier ¢'tlA12 on the modulation space. See [2] for additional
information on resent developments on the modulation space. Recently, [3] used these methods to acquire
B
similar bounded results for the unimodular Fourier multiplier /212
iff=1,t>1and1 < p,q, < oo, then

on the a-modulation space showing that

B 1.1 1.1
it|A| 2 ns—z nls—z
61‘ ‘ fH jf,‘ ’p Z‘HfHM;’_Li%a(R")_'—t ’p 2‘||f||M;:;so,a(Rﬂ),

M3 (B2)
where ¢y > 0 and sy is a constant depended on 7 and p, and if % <Bwithf#1,t>1land1<p,g <o

B 1.1 1.1
it|A|2 -3 " 5=3
At gy + O

MZ’% (R”)

where v > 0 and s; is a constant depended on B, «, , and p.
In this paper, we use the same almost orthogonality of projections and techniques on oscillating integrals
to find our results. Our main results can be stated as follows.

Theorem 1. For > 1,1 < p,q < oo, and t > 1, then the following estimate holds:

eit(IA)[Z;f‘ ‘

1 1 1 1
< B AL i PP HAL in
Mg (R") Mg (RT) Mp,g (R")

where v > 0 and v1 (B, «) is defined as

1 1
vl(ﬁ,a):n(52+2a)’p2‘. 1)
Theorem 2. Let1 < p,q < oo, and t > 1 then the following estimate holds:
n|l_1l41 n|l_1
Oxtglugacen) = sllyginny + 10 gl son o
where vy > 0 is any positive number, and vy () is defined by
vz(a):(na—Z)‘;—;‘. (2

As an application of our theorems, we prove that the following Nonhomogeneous Klein-Gordon equation
with initial date in an a-modulation space has a solution.
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Theorem 3. Consider the Nonlinear Klein-Gordon equation

opu(t, x) +u(t,x) — Au(t,x) + F(u(t,x)) =0, for(t,x) € Ry xR",

u(0,x) = fu(x), forx € R",

0:1(0,x) = gu(x), for x € R%,
where F = |u|*u. Suppose 1 < p,q < 00, T > 1, and a < min{%,%}. Suppose s > sg, where sq is picked
appropriately to make the a-modulation space a multiplication algebra [4], k be a positive integer and there exists a
constant cy that is depended on k only such that

[ ful s oy <

and
Ck

T”’%*%‘U*i)'fpr%k .

||gu||M;;f;(R") <
Then the nonlinear Klein-Gordon equation has a unique solution u in C([0, T My (R")).

2. Preliminaries

Now we recall the definition of the a-modulation spaces. Let 0 < « < 1,and ¢ < 1 and C > 1 be
two positive numbers which relate to the space dimension n. Suppose {7} }, czn be a sequence of Schwartz
functions that satisfies the following:

()] = 1, if ‘5, (k) =5 k‘ <clkyrs,
supp 17y C {C eR": ’(Z— (k)12 k’ < C<k>Ta’}’
Ykezn 13 (¢) =1, forall & € R”,
ald
(k)T |D%y2(¢)| = 1, forall € R” and all multi-index 6,

®)

where (k) = (1+ |k|?) 2. The standard construct for a function that satisfies conditions (8) is to let p be a smooth
radial bump function supported on the open ball of radius 2 centered at the origin that satisfies p(¢) = 1 when
|&] <1and p(¢) = 0 when |&| > 2. For any k € Z" define p} by

—(k 1&1’ k
Pe(8) =p (5 < >15a ) :
Now define 77} by

-1
(&) = p(2) ( Y p?(é)) '

lezr

This 7 will satisfy conditions (3).
For { };10 be a sequence of functions that satisfies conditions (3). Define [J; by

% = 7 1yt 7.
For0 < p,q < oo,s € R,and & € [0,1) define the norm H~||M%(Rn) by
1

s 1
1 lagzs ry = (EZn (ks |Dkf||;ip<Rn)> .

We now define the a-modulation space My (R") as the set of all f € . such that ||| M Ry < 00 See
[5-7] for a way to define the a-modulation in a continuous way and the various properties. See [4,6,8,9] for
additional properties of the a-modulation space, and its relation to the modulation space and the Besov space.
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One property to note is the a-modulation space is multiplication algebra with the appropriate conditions on p
and ¢ [4]. This property will be used later.
Finally, to prove the main theorems, we need to establish the following lemma.

Lemma 1. . Let t > 1 and U} be defined as above. Suppose there exists an N > 0 such that

. B
HD;;‘e”“A)Zf‘ ]Ll <l )

if |k| < N and
) B
|z < @i, ®
Ll
if |k| > N, where by > by > 0and d is a real number, then

g
HI—A)S Zb Zb
eitI=8)% ¢ 13-4 ||f||MS ) T o4 (1A g ey -

‘ ’M?’Z(R”)
where v > 0 and B is defined as

—2d(1—a) ’; - ;‘
Proof. Follows from the same argument as [1] and [3]. O

3. Proof of Theorem 1

In view of lemma 1 we need the following two proposition to proof theorem 1.

Proposition 1. For § > 1 and |k| = 0, we have the following estimate:

|7 (se@eren?)

n
= tz.
L1

Proof. Let L = ”TH ifnisodd and L = ”T*z if n is even. First note that

g g g
|77 (et | < f ] et g e [ [ (et g ax
L |x|<t |[/R" |x|>t | JR®
For the first integral by Schwartz’s inequality and Plancherel’s Theorem we have
1

(it ) i : GtHER) 2 ixg 3
[ L m@e e entag e < ([ ax) ([ (@) ae) <o o], <ot
|x[<t [/R" |x|<t n L

For the second integral define E; = {x &€ R":|x|>t}. For i,j € {1,2,---,n} define E;; =
{x € Ei : |x;] > |xj| forall j # i}.
Now by integration-by-parts and a calculation

/|x‘>t f 75 (8)e™

g

/ ) it(1+]¢)%) 2 le;d(—; dx

=X,

Z g
it(1 2\5 .
/E” [x[E / <Ug(€)elt( e >e’x§d5 dx
g
oL- ) 7 ( 6B—0 4it( (1+2]?) 2 gz g
/|X\<f |3C|L /" ; 2)le] ¢ldx

g

[, 16 @I L H1ER)? vtz

< tL/ i
<t |x|E
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In either case of n being odd or even, it follows that

2L(1—B) = (n+1)(1 - B) < ”erl <g+1.

Thus by Schwartz’s inequality and noting that 7§ has compact support it follows that

1 1
1 dx \?2 2
tL/ - d <tL</ ) (/ & x)|2 2L(/Sl)d) <
\x|§t |x|L X |x‘>t |X|2L A |170 (€)| |§| g -

This completes the proof. [

B

)2 zxrjdér

VR

[, m@)lepLene)

Proposition 2. For |k| # Oand t > 1. If B > 1, then we have the following estimate:

H 7 ( () (1+e] )2) < 14 (o
L1
Proof. Suppose |k| # 0. First making the substitutions of & = (k)T (&’ + k) followed by x = < o to get
B s
Hﬁl <,76¢(,§)elt(1+lf§| )2) = Hgl (Wg(g)ett(Hé )2>
L1
= [ o (1% @ i) e P e g
R" | JR"
g
_ w s it PR E )
R7 /]Rn Tk <<k>1 (g—’_k)) d¢
Define ® as
O =1+ ()P Tk +x
g
pu o 5
= (k) e (k) g+ k) T+ ¢
pu 2« 62
Then 32 = Bt (k) ¢ (& +k;) (k) T5 + |2 +k12) * +2x;, and
B ’% o
2P B(B—2)t (k)12 (§z+k)(§j+kj)<<k> 1“+|C+k|) ifi # j,
9&;9¢; L _2 7 pa & e
O B2 @k (W kR T g (07 g ekR) T i

Also note 2 ag = 0 when

: &
v = =) (@ k) (077 + 12+ KP)
or equivalently
: =
= Bt F (@ +0) (0755 + |2+ AP)
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Now for the case of n = 2 we have

B4 -2
’det(DCiDéjq))zz,jzll = RS (6 + k) <<k>‘12ﬁa + |§+k|2> Tt <<k>% + |g+k|2)ﬁz)

(5(/3—2) (k)

2 ﬁT —2a #
x(ﬁ(ﬁ—zuw“(mkz) (00l k) ™ e G0 (17 + 12+ kP) )

BB~ 2P ()T (&1 + k)2 (@ — k) ()1 - |€+k|2)ﬁ_4\

ﬁ

= 2P ()T | ()1

< (B2 (7% + je+ k) e kP +1)).

o -1
Then ‘det Dg, Dg )2 )i 1‘ = O only if (8 —2) ((k)ﬁ%a + |§+k|2> |& + k|> +1 = 0, which only happens
when f=1— (k >77|§—|—k\ <.

Thus when > 1 and when k # 0, ‘det(Dg Dg d)? ’ # 0. Also note that when k # 0

1]1

2P _ 1
R P TSve S A

. 2

> (ﬁt <k>1‘% |g+k|ﬁ—2> (rx—l—l— 2} )
14 (k)= |¢ + k|2

> Bt (k) 5 (K[

these calculation can be extended for n > 3.
Define C;(k) and D;(k) as

2

Ci(k) = pt ()T (|kif +C) (i [kl +C) ) ,

=

)

‘m
N‘

—_
N

g

2

ﬁ“m

Dy(k) = Bt (k) (k| — ©) (an(lkjl c>2>

=

—_

Define the intervals F; as the set of all x; € R, such that,
pa Ba
Dj(k) — t (k) 1= [k[P~2 < |xi] < Ci(k) + £ (k) 1= [K[F~2,

G;j to be the set of all x; € R such that

o , o ,
Ci(k) + £ (k) 1= [K[P2 4 j =1 < |x;| < Cik) + ¢ (k) 1= [K[P2 1,

and H; ; to be the set of all x; € R such that
pa pa
Di(k) — £ (k)15 [k[P~2 — j < |x;] < Dy(k) + ¢ (k)T |K[P~2 — j+ 1.
IBIX e —
Since |x| = Bt (k) 1=« | + k| ‘(k)flzjx + |{;’+k|2’ \#, then it follows that x; € F;. It also follows that

length(F;) <t (k > |k|/3 2 and
length(G; ;) = length(H; ;) = 1.
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Now define K;; = G; ; U H; j, then it follows that xr,(x;) + 2]9';1 XK (x;) = 1. Thus we have

Hﬂ“l(nz(@e”“” %) . / ”HXF %) /]R nqz(<k>ﬁ<g+k))eit(1+<k>ff“u¢+k| )% +int g
i 2112/% Tk (<k>ﬁ (C+k))e“(”<k>%‘¢+"' g*”‘édé dx
T 1
+21 Zl/nHXKu %) /nmg<<k>1“f’a(g+k))eit<1+<k>%|¢+k\ )8 vint gz
~ =
=hL+h+1,

where &7, is the product of characteristic functions xr, (x;) and xx; ;. (x;) where there is at least one xF, (x;) and

at least one x, (x;).

For Iy, with ¢ € supp 1y (<k>ﬁ (¢ + k)) and Van der Corput Lemma, see proposition 2.6.4 in [10], we

have

For additional details of Van der Corput lemma see [11,12].
Now note for x € K;; and ¢ € suppry ((k)ﬁ (& +k) ) we have

B (nz (<k>w<c+k>)) LR (0T @+ 0) =t (077 @ +0) e
g 2 a 00 \?
A ®
W<V |+ k[P (@+k)+%_xm
- s B2 2
B -
(ﬁt<k> = (it ki) | (k) “+|§+k|2\ +xi>
1 (k)% (k|2
=0 -+ 5
j+ VE T [k (]+f<>w|k| )
Thus, using integration-by-parts twice on each variable &1, - - - , ¢, we have
npa
n n (k) T-a |f|nB—2n
LD W s [ T, (x4
AT (o VR )
n npu n
<t (kyiw |k
" n(f—2+2x)
=< t2 (k) 20-%)
When ¢ € supp 7 (( VTw (E+ k)), then I is the sum of integrals of the form
. ‘ 20 X
Z Z/ HXEO Xiy) H XKy (xi) / e <<k>ﬂ(§+k)) it (1 () T8 |2 +k[2) 2438 g dy.

Jis=1 ju=1 ig=I+1
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So doing integration-by-parts twice on the variables {; 1, - - , {5, the above integral is bounded by

n n - l< > (n—1)p—2n
) Z e Z /n H XFIO 10 1_[ XKIQ/I xlU
(R | (]z + VR ) o=t

. npa n(f—2) " n(p—2+2a)
<t (709 [k < g a0

This completes the proof. [

4. Proof of Theorem 2

We now present the proof of theorem 2, which is proved through the following two propositions and
lemma 1.

Proposition 3. For1 < p,q < oo, t > 1and |k| = 0, then the following estimate holds

13+
108@xg gy = 172 gl

Proof. Suppose |k| = 0. Let L be defined by the same as in proposition 1. then by Bernstein’s Lemma we have

e ( ok sin<t<1+r¢|2>%>>
("0@) (1+1g)}

n n
1-7r 2T

< )

L2(Rr)  [O]=L

1811 () -
L2(R")

n n
1-71 1-3r

\sin(E(1 + 22)2)
H(1+|g[2)2

L2(R")

15 (¢

L2(R")
<t

_ 1
For the second norm, define h(|&|) = w Note that & is a C* function. Also, by a calculation we

(1+1gP)2
‘ 1
have limg|_, |Dh(|g|)| = 0, for all multi-indices é. Noticing that th(t|¢|) = %, then when || = L
(1+[¢1)2
we have
. 2\ 1 )
D (SIH(t(l + |‘§‘ 1)2)> < L+ sup Doh(|€|)‘ < LT
(1+ ) ger

Now it follows that

: 1 T W
DcS <U§(§)Sln( (1+|‘:| )2)> < tL+1)2L :t%tﬁ.
|6|=L 1+ |§|2)7 L2(R")
Therefore we have
n L L i
B OK ()8l 1 ey = 2820820 [[g] |1y = £ 7 [18]] 12 () -

By Plancherel’s Theorem it follows that

sin(t(1 +[g2)?)

sin(t(1+ [22)?)
(1+ 2?2

H1+|g2)2

= 181l 2wy =tz R -
L2(R")

§

IOk ()82 () =

L2(Rn) ’
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Now by Riesz-Thorin Interpolation and a duality argument it follows that

‘+1

T8O (0l gy = 72 gl o gy -
( (Rm)

This completes the proof. [J

Proposition 4. For1 < p,q < oo, t > 1, and k # 0, then the following estimate holds

0(71*

a1 1
T30k (gl = 172 0 T gl

Proof. Suppose |k| # 0. Again define L to be defined as in the proof of theorem 1. Then by the usual
substitutions and Bernstein’s lemma we have

BT @ +k) [[7F "

IR TT (€ +K)) sin(t(L+ (67 & +K)%)
(14 (k) &5 ¢+ K[2)}

||D%®K(t)g||Ll Rn = m
) (1+ (k)5 |2 1 k)b

)3

L2(Rn) |9]=L

For the first norm, noting that for large enough k we have
(k)% + |+ K[2)=% =< (k)L it follows that

‘ R € 0) ([T e[|k @R [T
(+ (0% 2+ k) | 2y (06T 415 + k)2 |2
< (k)T Al gy T
Gk

For the second norm, D sin(#(1 + (k )ﬂ |& + k|2 ) ) produces t* and (k) = factors when |5\ = L. Also,

after taking multiple derivatives we have the remaining factors of the form (1 + (k >1 = &+ k[2)~2 2 for some
positive integer j which again for large enough k we have

(L (k)75 15+ k)78 = (71 ()71 + J+ k)

Thus we have

%IX 1 % 2 l o na na n« n
Z D&”g(<k>1 (é‘—t—k))su;gt(l i <k>11 & +K7)2) =< 2 (k) 20-«) <k>*2L(1—a) <k>_ﬁ =1 (k) 2L(% a)
jo1=L (14 k)= (6 +K[2)> (")
Then it follows that

n—2L nal—n

[1OFOK (1) 11y = 2 (k)20 (k) 2007 = £ (Jp 20T

Using Plancherel’s theorem we have

jsin(t(1+ 2)2)
(1+2)2

=82 @y = [18l2n) -

10k Ok ()8l 12y = | i (¢ $

L2(R)

By Riesz-Thorin and a duality argument it follows that for 1 < p < o

anZ

a1 1
T80k (gl = 172 0 T gl

L2(R™")
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and this finishes the proof. [

Proof. To finish the proof of theorem 2 we first notice that by almost orthogonality we have

Ofex(hg = ), O Of0x(t)g

[1<vck

= Y Of0x()Os,

N<vck
where 7y¢ x is a constant dependent on C and k. Then by proposition 3 we have for small values of k
: i3t o
||Dk®K<t)g||Lp(]Rn) =t |||:|kg||LP(]R”) ’

and by proposition 4 we have for large values of k

<=

1 an=2|1_1
D80k (gl ey = 172 0 T2 | gl

By definition of the a-Modulation norm and following the same argument as [1] and [3] we have

141 nli-1
1 g+ 1A gl g

1
sa ) = 5
1Ok ()8 ey =t
This completes the proof. [J

5. Application to Klein-Gordon Type Equations

Corollary 1. Let1 < p,q < oo, t > 1, and u(t, x) be the solution to the Cauchy Problem for the Klein-Gordon Equation
ouu(t,x) +u(t,x) —Au(t,x) =0, for(t,x) € Ry xR",
u(0,x) = f(x), for x € R",
9:u(0,x) = g(x), for x € R?,

then we have the followings estimate

; < 54 pl5=3]
| |u‘ ‘M;’,’z (R”) — | |f| |M;Tq’71"" (R”) + | |f| |M;;V1(1/“)'D‘ (R")
n‘%—%‘-i—l n‘%—%‘
+ t | |g| |M;;172"7‘ (R”) + £ | |g‘ ‘M;;;VZ(D‘):“(RH) 4
where vy and vy, are positive real numbers, v1(1, &) and v, () are defined as in equation (1) and (2) respectively.
The formal solution to this equation is given by

u(t,x) = cos (t(I - Aﬁ) up(x) + Ok (t)ui(x),

where cos (t(l - A)%) is the Fourier multiplier with symbol cos (t(l +1¢ |2)%) The Fourier multiplier

Nf—

cos (t(l — A)%), or equivalent ef(/=4)

, estimate is given by theorem 1. Then with theorem 2 corollary 1
follows.
Now we close the paper with two applications: the (half) Klein-Gordon equation and the nonlinear

Klein-Gordon equation. Define the function space

C ([o, T],M;;z;) - {u(t,x) llleqro sy < oo},
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where ||u| ‘C([O,T],M;ff;) = supg;<r ||u(t, ')||M§;§(R")-

Theorem 4. Let1 < p,q < oo, 5 > 5o where s is defined appropriately to make the a-modulation space a multiplication
algebra [4], and T > 1. Suppose k is a positive integer and there is positive constant ¢y dependent only on k such that

Ck

[0l [ agye ey < :
i " ‘**" 1+2k)Tﬁ

Suppose 1 < B < 2(1 — ), then the nonlinear Klein-Gordon type equation of the form

{ zatu—(l—A)g +F(u) =0, for(tx)e Ry xR,
u(0,x) = uo(x), forx € R",

where F(u) = |u|*u has a unique solution u € C([0, T], My3).

Proof. Consider the mapping

B
2

B t,
Ty = et1- A)zuo—/o e=DU=8)2 F(y(7,.))dT.

Let C; where j = 1,2,3 denote some positive constants that are independent of all essential variables. By
Theorem 1 we have ;
3

(I8

<@ 0" ol
M)

Since the a-modulation space is a multiplication algebra when s > sy there is a constant A1 > 0 such

that
2k+1

< Agepn [t ) B g

‘ ‘ |u |2k+1 ‘ ‘
M;’%(R”) -

Let My = max {Ay, Agki1}- Now forany T > land t < T

t B t 1_1
’/EI(tT)(IA)ZF(u(T,.))dT gcl/(1+(t—r))"‘n 2‘ (T,.)|2kuH n
0 M@ o Miia ()
1_1
< em B sup (e, )|

0<t<T

Thus it follows that
53 2%k+1
[ Txulleqom,mz) = arli ol [agge ey + T sup_ [t )y gy | -
P P 0<t<T
Let £ = 1 , and let B; be the closed ball of radius £ centered at the origin in the

T
20,7 [P 2171) # 2k 1) %
space of C([0, T], M3). Suppose that

1

[1tol gzt ey < N

(2K + 1) 20y A2 (430 4
Thus it follows that
| Fxullcgom mse) < CT I f5-4 (HMOHM”‘ ®r) TEZkH) <L

and so Jx is a mapping from B into B.
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Then

‘O:

4 4 t. g
T — Ty = elt(lfA)Z (uO - UO) _/ el(t*T)(I A)2 <|u‘2k |Z)|2k0> dr.
0

With the above and Lemma from [1] we have that

n| 53|+ 2k+1
|| Fku — 9KU||C([0,T],M;;‘;’,) < GT )p 2‘ <||”0 _UOHM”‘ (Rn) T iuP [[u —v||M;§ Rn))

11
:C3Tn”’ i+ sup (||“—U||M” Rn) +||”_U||§Z$‘1R”)>
0<t<T
11
§C3Tn‘? 2‘+ sup || — | ppse ey (2k+1 L£%*
p M (RM)
0<t<T
1
5 sup_ [l =0l ps ey = 5 11 =l o,y ) -

This show that Jk is a contraction map on B.. Thus, by the fixed point theorem we have a unique solution
in B L O

Now we present the proof for Theorem 3

Proof. Let C i where j = 1,2, 3,4 are all essential constants. Define the map Jx¢ by

T = cos(t(I — A)2) fu(x) + O (t)g /@thr u(T, x))dr,

By the previous theorems and hypothesis we have

1 _1 1.1
Jeos(e(1 = )+ 0015 gy < 1 (17 H Al + #1704 gl )

Furthermore, we have

11‘

H/Ot@K(t—T)F(u(r,x))dT ) < CZ/OT ((1+(t—1—))n‘pz +(1+(t—T))n}a§’+1>

2k
e gy 7
P

<C2Mk Tn‘%f%‘le_i_Tn‘%f%‘wLZ H|u|2kuH
- M;’%(R")

11
ngMkT”‘P Z‘H (1+4T) sup ||uH§Zi}Rn)

1_1
SCsMan"’ tf+2 sup_ ||”||i§j“1w)’
0<t<

Thus we have

n|i-1 n|l—11+1
1o lleqomas ey < ST 2 U Aullygs oy + G2 gl g
1-3+2 k
+c4T"\v i sup ||u(t, )||§A;31Rn.
0<t<T
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Define Lxg = 1 , and Bg, . be an open ball centered at the origin in

(3C4) % (2k+1) % <T |[p-2]+2) %
C([0, TIMy5 (R")) with radius Lic. Suppose that the following estimates hold

1

||fu||M5f“(Rn) < )
" ac) A 2k 4+ 1 AT 0 E) 7}
(3C4) T2 (2k +1)

and

||gu||M‘“(Rn) <

R
H
==
|
Nf—=
—
[EN
+
N]
=
~—
H
=
+
_

(3Cy) 2 (2k +1)2
It follows that

1

11 2%+1
1 Fkcullc(o,rnmss rey) < CaT 7 [5-4] <||fM|M”‘(]R” + T18ul | mge e + T S?ETH”( )||Mj“ R )

< cg”‘%_%‘ 3 _ 1

1+ &)l
(3C) V2 (2k + 1) = T" =40+ %) 7 (3C1) % (2k +1)% (Tn) \+2)

ST

Therefore, k¢ : Br,. — Br,,- Furthermore, we have

Ticu — Tkcv = cos(t(I — A)2) (fulx) — fo(x)) + O () (gu(x) — go(x))
—/O Ox(t — 7)(F(u(t, x)) — E(v(t, x)))dt.

Now using the hypothesis we have ||g|| M3 (R < |1 full M3 (Rn), W have

| Fkett = Tkallcqorima ey < CaT 17 f5-4] (llfu follmge ey + T 118w = 8ol sz (mm)

+T% sup ||u— v||§§$1 R”))
0<t<T

a1 241
< CyT -4 ((2+t) [ fu = fol l v (my + TZO?ETH“ - UHM%(R”)>

Al 1l 2k+1
< ¢l OiltlgT(llu—vHM;;f.wa+||” ol )
,%’+
sup ||u—v||Meu(Rn (2k +1) L%,
0<t<T

n‘l—%’-&-z 2k+1

sup |1 — o[ sz (g
3ea(2k +1)T" 2+ 0sesT )

1
<3 SUf’TIIu ~ 0l ) = 3 111 = llego,mmys ey -

therefore Jx; is a contraction map and by the fixed point theorem there exists a unique solution u &
C([0, TIMy5 (R")). This completes the proof. [
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