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1. Introduction

L et T (p) denote the class of functions f of the form

f (z) = zp +
∞

∑
k=p+1

akzk, where p ∈ N = {1, 2, 3, . . . },

which are analytic and p−valent in the open unit disk E = {z ∈ C : |z| < 1} in the complex plane C. A
function f ∈ T (p) is said to be in the class S∗p (α) of p−valent starlike functions of order α in E if and only if it
satisfies

<
(

z f ′(z)
f (z)

)
> α, (0 ≤ α < p; z ∈ E).

On the other hand, a function f ∈ T (p) is said to be in the class Kp(α) of p−valently convex functions of
order α in E, if and only if it satisfies

<
(

1 +
z f ′′(z)
f ′(z)

)
> α, (z ∈ E; 0 ≤ α < p).

In particular, we write S∗1 (0) = S∗ andK1(0) = K, where S∗ andK are the usual subclasses of T (= T (1))
consisting of functions which are starlike and convex respectively. Write S∗p (0) = S∗p and Kp(0) = Kp.

Let Φ : C2 ×E→ C be an analytic function, p be an analytic function in E with (p(z), zp′(z); z) ∈ C2 ×E
for all z ∈ E and h be univalent in E. Then the function p is said to satisfy first order differential subordination
if

Φ(p(z), zp′(z); z) ≺ h(z), Φ(p(0), 0; 0) = h(0). (1)

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and p ≺ q
for all p satisfying (1). A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1), is said to be the best dominant
of (1).

In 2003, Irmak et al. [1] introduced and studied the subclass Tλ(p; α) of T (p). According to them a
function f ∈ T (p) is said to be in Tλ(p; α) if it satisfies the inequality

<
{

z f ′(z) + λz2 f ′′(z)
(1− λ) f (z) + λz f ′(z)

}
> α
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for z ∈ E; 0 ≤ λ ≤ 1; 0 ≤ α < p; p ∈ N. The following subclasses are the particular cases of class Tλ(p; α) :

Tλ(1; α) = Tλ(α), 0 ≤ λ ≤ 1; 0 ≤ α < 1,

T0(p; α) = S∗p (α), 0 ≤ α < p; p ∈ N,

T1(p; α) = Kp(α), 0 ≤ α < p; p ∈ N,

T0(α) = S∗1 (α) ⊆ S∗(α) ⊆ S∗(0) = S∗, 0 ≤ α < 1,

T1(α) = K1(α) ⊆ K(α) ⊆ K(0) = K, 0 ≤ α < 1.

Irmak et al. [1] obtained general results for f ∈ Tλ(p; α) which combined certain types of inequalities
concerning functions belonging to the classes S∗p (α), Kp(α), S∗p , Kp, S∗(α), K(α), S∗ and K. They obtained
the following result:

Theorem 1. Let z ∈ E, 0 ≤ α < p, p ∈ N and let a function f ∈ T (p). Define a function F(z) by

F(z) = (1− λ) f (z) + λz f ′(z), 0 ≤ λ ≤ 1,

and if F satisfies anyone of the following inequalities:∣∣∣∣∣∣∣∣
1 +

zF′′(z)
F′(z)

− p

zF′(z)
F(z)

− p
− 1

∣∣∣∣∣∣∣∣ <
1

2p− α
, (2)

∣∣∣∣1 + z
(

F′′(z)
F′(z)

− F′(z)
F(z)

)∣∣∣∣ <
p− α

2p− α
, (3)∣∣∣∣ F(z)

zF′(z)

(
1 +

zF′′(z)
F′(z)

)
− 1
∣∣∣∣ <

p− α

(2p− α)2 , (4)∣∣∣∣ zF′(z)
F(z)

[
1 + z

(
F′′(z)
F′(z)

− F′(z)
F(z)

)]∣∣∣∣ < p− α, (5)

<


zF′(z)
F(z)

1 +
zF′′(z)
F′(z)

− p

zF′(z)
F(z)

− p
− 1


 < 1, (6)

then f ∈ Tλ(p; α).

Irmak et al. [2–4] also provided interesting results for starlikeness and convexity of multivalent functions
involving certain inequalities.

The objective of present paper is to study the class Tλ(p; α) using the technique of differential
subordination to conclude the similar results. We notice that in this practice the region of variability of
operators studied has been extended considerably.

2. Preliminary

We shall need the following lemma to prove our main results.

Lemma 1. [5, Theorem 3.4h, p. 132]. Let q be univalent in E and let θ and φ be analytic in a domain D containing q(E),
with φ(w) 6= 0, when w ∈ q(E). Set Q(z) = zq′(z)φ[q(z)], h(z) = θ[q(z)] + Q(z) and suppose that either

(i) h is convex, or (ii) Q is starlike.
In addition, assume that

(iii) <
(

zh′(z)
Q(z)

)
> 0.

If p is analytic in E, with p(0) = q(0), p(E) ⊂ D and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)],
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then p ≺ q, and q is the best dominant.

3. Main Results

Theorem 2. Let q be a univalent function in E with q(z) 6= {0, m}, m ∈ N0 = N∪ {0} and

<
(

1 +
zq′′(z)
q′(z)

− β
zq′(z)
q(z)

− γ
zq′(z)

q(z)−m

)
> 0, z ∈ E.

Suppose that f ∈ T (p). Define a function F(z) as

F(z) = (1− λ) f (z) + λz f ′(z), 0 ≤ λ ≤ 1,

and if F is such that
zF′(z)
F(z)

6= {0, m} and satisfies

1 +
z
(

zF′(z)
F(z)

)′
(

zF′(z)
F(z)

)β ( zF′(z)
F(z)

−m
)γ
≺ 1 +

zq′(z)
qβ(z)(q(z)−m)γ

(7)

where the complex powers in (7) take their principal values, then

zF′(z)
F(z)

≺ q(z), z ∈ E,

and q is the best dominant.

Proof. For f ∈ T (p) and F(z) = (1− λ) f (z) + λz f ′(z), we have

zF′(z)
F(z)

=
z f ′(z) + λz2 f ′′(z)

(1− λ) f (z) + λz f ′(z)
.

Let u(z) =
zF′(z)
F(z)

. Therefore (7) reduces to

1 +
zu′(z)

uβ(z)(u(z)−m)γ
≺ 1 +

zq′(z)
qβ(z)(q(z)−m)γ

.

Define θ and φ as

θ(w) = 1 and φ(w) =
1

wβ(w−m)γ

where θ and φ are analytic in C \ {0, m} and φ(w) 6= 0, w ∈ C \ {0, m}. Therefore

Q(z) = zq′(z)φ(q(z)) =
zq′(z)

qβ(z)(q(z)−m)γ

and h(z) = θ(q(z)) + Q(z) = 1 + Q(z). A little calculation yields

zQ′(z)
Q(z)

= 1 +
zq′′(z)
q′(z)

− β
zq′(z)
q(z)

− γ
zq′(z)

q(z)−m

and
zh′(z)
Q(z)

=
zQ′(z)
Q(z)

.
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In view of the given condition, we have Q(z) is starlike in E and

<
(

zh′(z)
Q(z)

)
> 0.

The proof, now, follows from Lemma 1.

For β = 1 = γ and m = p, Theorem 2 reduces to the following result:

Theorem 3. Let q be a univalent function in E, with q(z) 6= {0, p}, p ∈ N and satisfying the following condition

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

− zq′(z)
q(z)− p

)
> 0.

Suppose that f ∈ T (p) and define F(z) = (1− λ) f (z) + λz f ′(z), 0 ≤ λ ≤ 1. If F,
zF′(z)
F(z)

6= {0, p}, satisfies

the differential subordination

1 +
zF′′(z)
F′(z)

− p

zF′(z)
F(z)

− p
≺ 1 +

zq′(z)
q(z)(q(z)− p)

,

then
zF′(z)
F(z)

≺ q(z), z ∈ E,

and q is the best dominant.

Proof. Proof of this theorem is on the similar lines as that of the proof of Theorem 2 for β = 1 = γ and
m = p.

On selecting q(z) = 1 +
2
3

z2 as a dominant in the above result, we observe that for a natural number
p, p ≥ 2,

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

− zq′(z)
q(z)− p

)
= <

(
18(1− p)− 8z4

9(1− p) + 6z2(2− p) + 4z4

)
> 0.

Thus, we have the following result:

Corollary 1. For natural number p, p ≥ 2 and 0 ≤ λ ≤ 1, let f ∈ T (p) and define F(z) = (1− λ) f (z) + λz f ′(z).

If F,
zF′(z)
F(z)

6= {0, p}, satisfies the condition

1 +
zF′′(z)
F′(z)

− p

zF′(z)
F(z)

− p
≺ 1 +

12z2

(3 + 2z2)(3 + 2z2 − 3p)
,

then
zF′(z)
F(z)

≺ 1 +
2
3

z2, z ∈ E,

hence f ∈ Tλ(p; 0).

We have the following observations:

Remark 1. (i) On taking λ = 0 in Corollary 1, we have:
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If f ∈ T (p),
z f ′(z)

f (z)
6= {0, p}, where p ∈ N and p ≥ 2, satisfies

1 +
z f ′′(z)
f ′(z)

− p

z f ′(z)
f (z)

− p
≺ 1 +

12z2

(3 + 2z2)(3 + 2z2 − 3p)
,

then
z f ′(z)

f (z)
≺ 1 +

2
3

z2, z ∈ E,

and hence f ∈ S∗p .
(ii) For p = 2 in the above result, we have:

If f ∈ T (2), z f ′(z)
f (z)

6= {0, 2}, satisfies

f (z)
z f ′(z)− 2 f (z)

(
z f ′′(z)
f ′(z)

− 1
)
≺ 1 +

12z2

4z4 − 9
, z ∈ E. (8)

then
z f ′(z)

f (z)
≺ 1 +

2
3

z2,

hence f ∈ S∗2 .

Putting α = 0 = λ and p = 2 in (2) of Theorem 1, we get:

If f ∈ T (2), z f ′(z)
f (z)

6= {0, 2}, satisfies

∣∣∣∣ f (z)
z f ′(z)− 2 f (z)

(
z f ′′(z)
f ′(z)

− 1
)
− 1
∣∣∣∣ < 1

4
, z ∈ E. (9)

then f ∈ S∗2 .
(iii) By selecting λ = 1 in Corollary 1, we get the following result:

If f ∈ T (p), 1 +
z f ′′(z)
f ′(z)

6= {0, p}, where p ∈ N and p ≥ 2, satisfies

1 +
z(2 f ′′(z) + z f ′′′(z))

f ′(z) + z f ′′(z)
− p

1 +
z f ′′(z)
f ′(z)

− p
≺ 1 +

12z2

(3 + 2z2)(3 + 2z2 − 3p)
,

then

1 +
z f ′′(z)
f ′(z)

≺ 1 +
2
3

z2, z ∈ E,

thus f ∈ Kp.
(iv) On taking p = 2 in the above result, we have:

If f ∈ T (2), z f ′′(z)
f ′(z)

6= 1, satisfies

f ′(z)
(

f ′(z)− z f ′′(z)− z2 f ′′′(z)
)

f ′2(z)− z2 f ′′2(z)
≺ 1 +

12z2

4z4 − 9
, (10)

then

1 +
z f ′′(z)
f ′(z)

≺ 1 +
2
3

z2, z ∈ E,

hence f ∈ K2.
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For λ = 1 and on selecting α = 0, p = 2 in (2) of Theorem 1, we obtain:

If f ∈ T (2), z f ′′(z)
f ′(z)

6= 1, satisfies

∣∣∣∣∣ f ′(z)
(

f ′(z)− z f ′′(z)− z2 f ′′′(z)
)

f ′2(z)− z2 f ′′2(z)
− 1

∣∣∣∣∣ < 1
4

, (11)

then f ∈ K2, z ∈ E.

We observe that according to (8), the operator
f (z)

z f ′(z)− 2 f (z)

(
z f ′′(z)
f ′(z)

− 1
)

maps the open unit disk

over the total shaded region shown in Figure 1, whereas according to (9), same operator takes values
in the disk of radius 1/4 centered at (1, 0) to conclude that f ∈ S∗2 . Thus the result in (8) gives an
extension of region over the region given by (9) for the same conclusion. In view of (10), the operator
f ′(z)

(
f ′(z)− z f ′′(z)− z2 f ′′′(z)

)
f ′2(z)− z2 f ′′2(z)

varies in the total shaded region shown in Figure 1, while it takes values

in disk of radius 1/4 centered at (1, 0) according to (11). Thus the region of variation extends in (10) over (11)

for the operator
f ′(z)

(
f ′(z)− z f ′′(z)− z2 f ′′′(z)

)
f ′2(z)− z2 f ′′2(z)

to conclude that f ∈ K2.

-1 0 1 2 3

-1.0

-0.5

0.0

0.5

1.0

Figure 1

By taking β = 1 and γ = 0 in Theorem 2, we have the following result:

Theorem 4. Let q be a univalent function in E, with q satisfy

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
> 0.

Suppose that f ∈ T (p), p ∈ N and define F(z) = (1− λ) f (z) + λz f ′(z), where 0 ≤ λ ≤ 1. If F,
zF′(z)
F(z)

6= 0,

satisfies

1 +
zF′′(z)
F′(z)

− zF′(z)
F(z)

≺ zq′(z)
q(z)

, z ∈ E,

then
zF′(z)
F(z)

≺ q(z),

and q is the best dominant.

Proof. The proof can be obtained by taking β = 1, γ = 0 in the proof of Theorem 2.
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Selecting q(z) =
1 + z
1− z

as a dominant in the above theorem, we can easily check that

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)

)
= <

(
1 + z2

1− z2

)
> 0.

Hence we have the following result:

Corollary 2. Let f ∈ T (p), p ∈ N and F(z) = (1− λ) f (z) + λz f ′(z) such that
zF′(z)
F(z)

6= 0. If F satisfies

1 +
zF′′(z)
F′(z)

− zF′(z)
F(z)

≺ 2z
1− z2 ,

then
zF′(z)
F(z)

≺ 1 + z
1− z

, z ∈ E,

hence f ∈ Tλ(p; 0).

We have the following observations regarding the above result:

Remark 2. (i) On taking λ = 0, in Corollary 2, we have:

If f ∈ T (p),
z f ′(z)

f (z)
6= 0, where p ∈ N satisfies the following

1 +
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

≺ 2z
1− z2 ,

then
z f ′(z)

f (z)
≺ 1 + z

1− z
, z ∈ E,

and hence f is p−valently starlike.
(ii) By putting p = 1, in the above result, we conclude that:

If f ∈ T ,
z f ′(z)

f (z)
6= 0, satisfies the differential subordination

1 +
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

≺ 2z
1− z2 , (12)

then
z f ′(z)

f (z)
≺ 1 + z

1− z
, z ∈ E,

and hence we conclude that f is starlike.

For α = 0 = λ and p = 1, result can be obtained from (3) of Theorem 1, as below:

If f ∈ T satisfies ∣∣∣∣1 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

∣∣∣∣ < 1
2

(13)

then f ∈ S∗.
(iv) Selecting λ = 1 in Corollary 2, we get:

Let f ∈ T (p), p ∈ N satisfies

z(2 f ′′(z) + z f ′′′(z))
f ′(z) + z f ′′(z)

− z f ′′(z)
f ′(z)

≺ 2z
1− z2 , z ∈ E
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then

1 +
z f ′′(z)
f ′(z)

≺ 1 + z
1− z

,

hence f ∈ Kp.
(v) For p = 1 in the above result, we get:

Let f ∈ T satisfies
z(2 f ′′(z) + z f ′′′(z))

f ′(z) + z f ′′(z)
− z f ′′(z)

f ′(z)
≺ 2z

1− z2 , z ∈ E (14)

then

1 +
z f ′′(z)
f ′(z)

≺ 1 + z
1− z

,

hence f is convex.

For p = 1 = λ and α = 0 we get from (3) of Theorem 1:

Let f ∈ T satisfies ∣∣∣∣ z(2 f ′′(z) + z f ′′′(z))
f ′(z) + z f ′′(z)

− z f ′′(z)
f ′(z)

∣∣∣∣ < 1
2

, z ∈ E (15)

hence f is convex.

According to (12), 1 +
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

takes values in the whole complex plane except two slits along

imaginary axis from−∞ to−1 and from 1 to ∞ to conclude that f is starlike. While this operator in view of (13)
takes values in the disk of radius 1/2 with center at origin to conclude that f is starlike. The facts have been

shown pictorially in Figure 2. Thus region of variation for the operator 1+
z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

extends in (12) over

the region given in (13) for f to be starlike. Similarly the region of variation for
z(2 f ′′(z) + z f ′′′(z))

f ′(z) + z f ′′(z)
− z f ′′(z)

f ′(z)
extends in (14) over the region given in (15) for f to be convex.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 2

Selecting β = γ = 1 and m = 0 in Theorem 2, we get the following result:

Theorem 5. Let q, q 6= 0 be a univalent function satisfying

<
(

1 +
zq′′(z)
q′(z)

− 2zq′(z)
q(z)

)
> 0, z ∈ E.
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Let f ∈ T (p), p ∈ N and F(z) = (1− λ) f (z) + zλ f ′(z), 0 ≤ λ ≤ 1. If F,
zF′(z)
F(z)

6= 0, satisfies

F(z)
zF′(z)

(
1 +

zF′′(z)
F′(z)

)
≺ 1 +

zq′(z)
q2(z)

, z ∈ E,

then
zF′(z)
F(z)

≺ q(z),

and q is the best dominant.

Proof. For β = γ = 1 and m = 0 the proof of this theorem is on the similar lines as the proof of Theorem 2.

Choosing q(z) =
1 + z
1− z

as a dominant in the above theorem, we can easily check that

<
(

1 +
zq′′(z)
q′(z)

− 2zq′(z)
q(z)

)
= <

(
1− z
1 + z

)
> 0. Hence we get:

Corollary 3. Let f ∈ T (p), p ∈ N. If F(z) = (1− λ) f (z) + zλ f ′(z),
zF′(z)
F(z)

6= 0, 0 ≤ λ ≤ 1, satisfies

F(z)
zF′(z)

(
1 +

zF′′(z)
F′(z)

)
≺ 1 + 4z + z2

(1 + z)2 , z ∈ E,

then
zF′(z)
F(z)

≺ 1 + z
1− z

,

hence f ∈ Tλ(p; 0).

We have the following observations:

Remark 3. (i) For λ = 0 in Corollary 3, we get:

If f ∈ T (p),
z f ′(z)

f (z)
6= 0, p ∈ N and satisfies

f (z)
z f ′(z)

(
1 +

z f ′′(z)
f ′(z)

)
≺ 1 + 4z + z2

(1 + z)2 , z ∈ E,

then
z f ′(z)

f (z)
≺ 1 + z

1− z
,

hence f ∈ S∗p .
(ii) Putting p = 1 in the above result, we have:

If f ∈ T ,
z f ′(z)

f (z)
6= 0, satisfies

f (z)
z f ′(z)

(
1 +

z f ′′(z)
f ′(z)

)
≺ 1 + 4z + z2

(1 + z)2 , z ∈ E, (16)

then
z f ′(z)

f (z)
≺ 1 + z

1− z
,

hence f ∈ S∗.

For λ = 0, p = 1 and α = 0 from (4) of Theorem 1, we get:
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If f ∈ T ,
z f ′(z)

f (z)
6= 0, satisfies

∣∣∣∣ f (z)
z f ′(z)

(
1 +

z f ′′(z)
f ′(z)

)
− 1
∣∣∣∣ < 1

4
, z ∈ E, (17)

hence f is starlike.
(iii) Putting λ = 1 in Corollary 3, we have:

If f ∈ T (p), p ∈ N satisfies the condition

f ′(z)( f ′(z) + 3z f ′′(z) + z2 f ′′′(z))
( f ′(z) + z f ′′(z))2 ≺ 1 + 4z + z2

(1 + z)2 , z ∈ E,

then

1 +
z f ′′(z)
f ′(z)

≺ 1 + z
1− z

,

hence f ∈ Kp.
(iv) On substituting p = 1 in the above result, we get:

Let f ∈ T satisfies
f ′(z)( f ′(z) + 3z f ′′(z) + z2 f ′′′(z))

( f ′(z) + z f ′′(z))2 ≺ 1 + 4z + z2

(1 + z)2 , z ∈ E, (18)

then

1 +
z f ′′(z)
f ′(z)

≺ 1 + z
1− z

,

hence f ∈ K.

For λ = 1 = p and α = 0 in (4) of Theorem 1, we have the following result:

If f ∈ T satisfies ∣∣∣∣ f ′(z)( f ′(z) + 3z f ′′(z) + z2 f ′′′(z))
( f ′(z) + z f ′′(z))2 − 1

∣∣∣∣ < 1
4

, z ∈ E, (19)

hence f ∈ K.

We observe in view of (16) that
f (z)

z f ′(z)

(
1 +

z f ′′(z)
f ′(z)

)
takes values in the whole complex plane except the

slit on real axis from 3/2 to ∞ as shown in Figure 3 and according to (17), the same operator takes values
in the disk of radius 1/4 centered at (1, 0) to conclude that f is starlike. Therefore the region in (16) is an
extension of the region given in (17) to conclude that f ∈ S∗. Similarly, the region given in (18) for the operator
f ′(z)( f ′(z) + 3z f ′′(z) + z2 f ′′′(z))

( f ′(z) + z f ′′(z))2 extends over the region given in (19) to conclude that f is convex. The facts

are shown pictorially in Figure 3.
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Selecting β = 0 = γ in Theorem 2, we have the following result:

Theorem 6. Let q be a convex univalent function and let f ∈ T (p), p ∈ N. Define F(z) = (1 − λ) f (z) +

λz f ′(z), 0 ≤ λ ≤ 1 and if F,
zF′(z)
F(z)

6= 0, satisfies

zF′(z)
F(z)

(
1 +

zF′′(z)
F′(z)

− zF′(z)
F(z)

)
≺ zq′(z), z ∈ E

then
zF′(z)
F(z)

≺ q(z),

and q is the best dominant.

Proof. Proof of this theorem is on the similar lines as that of Theorem 2 for β = 0 = γ.

Taking q(z) = 1 +
2
3

z2 as a dominant in the above theorem. We can easily check that <
(

1 +
zq′′(z)
q′(z)

)
=

<(2) > 0. Hence, we get the following result:

Corollary 4. Let f ∈ T (p), p ∈ N. If F(z) = (1− λ) f (z) + zλ f ′(z),
zF′(z)
F(z)

6= 0, 0 ≤ λ ≤ 1, satisfies

zF′(z)
F(z)

(
1 +

zF′′(z)
F′(z)

− zF′(z)
F(z)

)
≺ 4

3
z2, z ∈ E,

then
zF′(z)
F(z)

≺ 1 +
2
3

z2,

hence f ∈ Tλ(p; 0).

We have the following observations regarding the above result:

Remark 4. (i) For λ = 0 in Corollary 4, we get:

For f ∈ T (p),
z f ′(z)

f (z)
6= 0, p ∈ N, if f satisfies

z f ′(z)
f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
≺ 4

3
z2, z ∈ E,

then
z f ′(z)

f (z)
≺ 1 +

2
3

z2,

hence f ∈ S∗p .
(ii) For p = 1 in the above result, we have :

If f ∈ T ,
z f ′(z)

f (z)
6= 0, satisfies

z f ′(z)
f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
≺ 4

3
z2, z ∈ E, (20)

then
z f ′(z)

f (z)
≺ 1 +

2
3

z2,

hence f is starlike.

Putting λ = 0, p = 1 and α = 0 in (5) of Theorem 1, we have:
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If f ∈ T , satisfies ∣∣∣∣ z f ′(z)
f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)∣∣∣∣ < 1, z ∈ E, (21)

hence f is starlike.
(iii) Putting λ = 1 in Corollary 4, we have:

Let f ∈ T (p),
z f ′(z)

f (z)
6= 0, p ∈ N. If f satisfies

z
(

1 +
z f ′′(z)
f ′(z)

)(
2 f ′′(z) + z f ′′′(z)

f ′(z) + z f ′′(z)
− f ′′(z)

f ′(z)

)
≺ 4

3
z2,

then

1 +
z f ′′(z)
f ′(z)

≺ 1 +
2
3

z2, z ∈ E,

and hence f is p−valently convex.
(iv) For p = 1 in the above result, we get:

If f ∈ T satisfies

z
(

1 +
z f ′′(z)
f ′(z)

)(
2 f ′′(z) + z f ′′′(z)

f ′(z) + z f ′′(z)
− f ′′(z)

f ′(z)

)
≺ 4

3
z2, (22)

then

1 +
z f ′′(z)
f ′(z)

≺ 1 +
2
3

z2, z ∈ E,

and hence f is convex.

On substituting p = 1 = λ and α = 0 in (5) of Theorem 1, we obtain the following result:

If f ∈ T satisfies ∣∣∣∣z(1 +
z f ′′(z)
f ′(z)

)(
2 f ′′(z) + z f ′′′(z)

f ′(z) + z f ′′(z)
− f ′′(z)

f ′(z)

)∣∣∣∣ < 1, z ∈ E, (23)

then f is convex.

In view of (20), we notice that the operator
z f ′(z)

f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
maps the open unit disk to the

disk of radius 4/3 centered at origin to conclude that f is starlike while this operator in view of (21) takes
values in unit disk, as shown in Figure 4, to conclude that f is starlike. Thus there is an extension of the region
in (20) over (21) for the same conclusion. Similarly, there is an extension of the region in (22) over (23) for the

operator z
(

1 +
z f ′′(z)
f ′(z)

)(
2 f ′′(z) + z f ′′′(z)

f ′(z) + z f ′′(z)
− f ′′(z)

f ′(z)

)
to conclude that f is convex.
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Letting β = 0, γ = 1 and m = p in Theorem 2, we obtain the following result:
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Theorem 7. Let q be a univalent function with q(z) 6= p, p ∈ N and satisfy the condition

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)− p

)
> 0.

Let f ∈ T (p), and define F(z) = (1− λ) f (z) + λz f ′(z), where 0 ≤ λ ≤ 1. If F,
zF′(z)
F(z)

6= {0, p}, satisfies

zF′(z)
F(z)

1 +
zF′′(z)
F′(z)

− zF′(z)
F(z)

zF′(z)
F(z)

− p

 ≺ zq′(z)
q(z)− p

, z ∈ E,

then
zF′(z)
F(z)

≺ q(z),

and q is the best dominant.

Taking λ = 0 in above Theorem 7, we have:

Corollary 5. Let q be a univalent function in E with q(z) 6= p, p ∈ N and be such that

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)− p

)
> 0.

If f ∈ T (p),
z f ′(z)

f (z)
6= {0, p}, satisfies

z f ′(z)
z f ′(z)− p f (z)

(
1 +

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)
≺ zq′(z)

q(z)− p
, z ∈ E,

then
z f ′(z)

f (z)
≺ q(z),

and q is the best dominant.

Putting λ = 1 in Theorem 7, we have:

Corollary 6. Let q be a univalent function in E with q(z) 6= p, p ∈ N and be such that

<
(

1 +
zq′′(z)
q′(z)

− zq′(z)
q(z)− p

)
> 0.

Let f ∈ T (p),
z f ′(z)

f (z)
6= {0, p}, satisfy

(
1 +

z f ′′(z)
f ′(z)

)(
f ′(z)[2 f ′′(z) + z f ′′′(z)]
f ′′(z)[ f ′(z) + z f ′′(z)]

− 1
)
≺ zq′(z)

q(z)− p
, z ∈ E,

then

1 +
z f ′′(z)
f ′(z)

≺ q(z),

and q is the best dominant.
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