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Abstract 

 
In a similar spirit to the papers [1,2], existence and decay for a plate type equation is obtained. The result is a 

generalization of the work for the linear equation in the paper [1]. 
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1 Preliminary 

 
We study the following equation in [0, )nR   ( 1n  )                    
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The memory term t 
 
is defined by 
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t t s x s ds      . 

Original Research Article 



 

 
 

 

Xu and Mao; ARJOM, 17(12): 63-70, 2021; Article no.ARJOM.79302 
 

 

 
64 

 

We assume the memory kernel ( )t satisfies the following assumption.  
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with  0 1,2,3jC j  are constants. 

 

And 2g( , )tx   satisfies the following assumption. 

 
2 2gg( , ) ( , ), 0x xt t

              , 

 

here is an integer satisfying n  with 

5 , 3,

: 2
1 , 4.
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 For k Z  , we denote 

 

1
( , ) 2 , 1.
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Theorem1.1 Let s Z  ,  max 1,3s n  . Suppose  

 
2 1

0

sH L    and 
1

1

sH L   . Put  

 

2 1 10 0 1 0 1: s sH H L L
E        . 

 

Then there exists uniquely a solution 
0 2 1([0, ); ) ([0, ); )s sC H C H      of (P) satisfying the 

following estimates: 
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Here 0k  satisfying ( , )k n s  . 

 

We recall some related work.  Da Luz-Charão (see [3]) studied the following dissipative plate equation in a 

bounded domain in 
nR  (1 5n  ) 

 
22(1 ) ( )t t g        .         

                

Here t is the linear dissipative term.  Sugitani-Kawashima (see [4]) studied this problem in 
nR  and extend 

the results to general n . Subsequently, Liu-Kawashima (see [5,6]) studied a more complex equation 
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2 2
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

      .                

        

In [7], Liu-Kawashima studied the following memory type equation  

 
2 2( 1) ( )t t g            . 

                 

Liu (see [2], also [8] for related results) further studied the following Cauchy problem 

 
2 2(1 ) ( 1) ( , , )t t tg                  . 

          

Mao-Liu (see [9])
 
generalized the results of plate-type equation (see [2,7]) with memory to higher order 

equations. They studied fractional order of derivatives.  They also (see [10]) studied equations of variable 

coefficients. 

 

In these papers, the memory term under consideration is t   . Recently, Liu-Ueda (see [1]) studied a type of 

linear plate equation with some different memory term t  . They obtained some decay estimates and 

asymptotical behavior for solutions under suitable assumption.  

 

Similar results also holds for Timoshenko system (see [11,12]) and hyperbolic-elliptic system (see [13]). For 

more related results, we refer to [14,15,16,17,5,18].  

 

In section 2, we will prove Theorem 1.1, which extends the result in [1] to the case of semi-linear perturbations. 

 

2 Proof of Theorem 1.1 

 
We note that the solution can be formally expressed as 

 

2

0 1
0

( ) ( ) ( ) + ( ) ( , )x

t

x x x tt G t H t H t s g ds            . 

 

Here ,G H are the fundamental solutions of the corresponding linear equation, and the notation x  denotes the 

convolution with respect to x . 

 

We recall several lemmas. 

 

Lemma 1 (see [1]).  Let 0s  , 1 2p  .  Then the following estimates hold for 0 k l s   , S   

(the class of Schwartz functions): 
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By a little modification of the theorem 2.7 in [1], we have the following  

 

Lemma 2 (see [1]). Let
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n
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Proof. Let k , m Z  . 

 

Let 1p   in Lemma 1, we have 
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Here 0 , ( 1,2).ik m s i    
 

 

Choose the smallest integers i satisfying 
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Similarly, we have 
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That is the conclusion. 

 

Lemma 3 (see [2]). Let 
1 1 1

1 , , ,  p q r
p q r

      and 0,  m 1k   , 1n   be integers.  Then 
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 
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Just by a direct computation, we get  

 

Proposition 1 (cf. [2]). Let 0a  and 0b  be real numbers. If 1a b  , then there exists 0C  such that 

0
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t
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Now we come to prove Theorem 1.1, we mimic the argument in [2], and define 
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 0 2 1Y : ( ; ) ( ; ),s s

Y
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Denote 
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By the assumption of f and Lemma 3, we have the following inequalities  
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Now we will prove that the mapping  T  is contraction on  : ;
Y

B Y      for some 0  . This 

will be done in the following (S1)—(S4). 
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Then by a similar way as in [2], we can obtain 
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(S3). In a similar way as in the part (S2), we can prove that 
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(S4).  The estimates in (S2) and (S 3) imply that 
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It then yields that 

 

  0 1( ) ( +)
1

2Y YY x xG t H tT       . 

 

Hence the mapping  T   is contraction on B . Then the fixed point theorem imply that there exists a 

unique fixed point B  satisfying  T   . That is, this B   satisfies the equation 

 

2

0 1
0

( ) ( ) ( ) + ( ) ( , ) .
t

x x txxt G t H t H t s g ds              

 

So it is the solution to the semi-linear problem (P), and satisfies the corresponding decay estimates in Theorem 

1.1.  

 

Remark.  In the proof above, we just sketched in some parts and left the details. The reader can refer to the 

paper [2] for similar argument.  

 

3 Conclusion  

 
We studied the Cauchy problem of a class of semi-linear plate type equation. We obtained the global existence 

(in time t ) under the assumption of smallness of initial data,  and  some decay for solutions to this equation in 

terms of fixed point theorem. Our result is a generalization of the decay for the linear equation in [1]. 
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