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ABSTRACT 
 

Climate change occurs when there is rise in average surface temperature on earth, which is mostly 
due to the burning of fossil fuels usually by human activities. It has been known to contribute 
greatly to the occurrence of extreme storms and rainfall, this trend continues as the effect of 
climate change becomes more pronounced. Therefore, this study modelled the extreme rainfall 
data of three locations (Calabar, Ikeja, Edo) in Nigeria. The block maxima method was used to pick 
out the maximum rainfall data in each year to form annual maxima data set. The parameters 
[location, scale, shape] were estimated using both the Classical and Bayesian methods. The result 
shows that the Bayesian Informative approach is a very good procedure in modelling the Nigerian 
Extreme Rainfall data. 
 

 
Keywords: Climate change; Generalized Extreme Value (GEV); prior elicitation; block maxima; 

Maximum Likelihood Estimation (MLE). 
 

1. INTRODUCTION 
 

In recent years, there has been a heightened 
concern about unmitigated alteration of our 

climate system which has exacerbated extreme 
weather events, accelerated sea level rise, 
desertification, coastal erosion, droughts, and 
unprecedented rise in ambient temperature, 
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flooding causing property damage and 
population displacement and socio economic 
burdens [1]. 
 

The world has been getting drenched as a result 
of climate change. Heavy downpours in some 
part of Nigeria have become more frequent over 
the last 3 to 5 decades, and global warming is 
thought to have increased rainfall in some part of 
the world's driest regions. Because of the high 
impact these extreme precipitation events have 
on society, it is important to understand the 
atmospheric condition that set the stage for these 
incidents. 
 

Climate is influenced by a multitude of factors 
that operate at timescales ranging from hours to 
hundreds of millions of years. Many of the 
causes of climate change are external to the 
earth system. Others are part of the earth system 
but external to the atmosphere. Still others 
involve interactions between the atmosphere and 
other components of the earth system and are 
collectively described as feedbacks within the 
earth system. Feedbacks are among the mostly 
recently discovered and challenging causal 
factors to study. Nevertheless, these factors are 
increasingly recognized as playing fundamental 
roles in climate variation. Thus, this research 
aimed to apply Bayesian approach to model the 
extreme precipitation due to climate change 
problem and often lead to flooding in three 
locations (Calabar, Ikeja and Edo) in Nigeria in 
order to determine the likelihood distribution for 
the data, to elicit the prior for the parameters in 
the distribution and to model the extreme rainfall 
event distribution. 
 

Application of extreme value theory to evaluate 
some of the most important statistical methods 
that are used for occurrence anaysis of the 
extreme precipitation (rainfall) event has been 
discussed in the work of [2,3,4,5]. Extreme value 
theory is applied on ten station data located in 
the Mediterranean region using two main 
fundamental approaches, block-maxima and 
Peak over threshold and three commonly used 
methods for the calculation of the extreme 
distributions parameters(Maximum Likelihood, L 
Moment and Bayesian) are analysed and 
compared. The results showed that the 
Generalized Pareto Distribution provides better 
theoretical justification to predict extreme 
precipitation compared to Generalised Extreme 
Value Distribution while in the majority of stations 
the most accurate parameters for the highest 
precipitation levels are estimated with the 
Bayesian method. 

Modelling the mean annual rainfall for data 
recorded in Zimbabwe from 1901 to 2009 using 
extreme value theory to estimate the probabilities 
of meteorological droughts (beyond and below 
normal rainfall) was carried out by [6,7]. They 
exploited the duality between distribution of 
minimal and maxima and used to fit the 
generalised extreme value distribution using the 
maximum likelihood estimation and Bayesian 
approach to estimate the parameters. His 
research shows that minimum annual rainfall 
follows Weibull class of distribution and the 
augmented Dickey (ADF) test showed that the 
minimum annual rainfall data were stationary and 
has no trend. The work is central on using 
generalised extreme value distribution to model 
extreme minimum rainfall and concluded after 
estimating the parameter using Bayesian 
approach that the parameter estimated were 
closed to the maximum likelihood estimate with 
smaller standard deviations using non-
informative prior. Similarly, an annual rainfall 
data of Alor setar rainguage station modelling 
using generalised extreme value (GEV) 
distribution and a Bayesian Markov Chain Monte 
Carlo (MCMC) simulation was established in 
their work, [8]. The outcome of the informative 
prior and non-informative prior were compared 
and concluded on the basis of the outcome that 
there is a reduction in estimated values which is 
due to information prior. 
 

2. METHODOLOGY 
 
Block Maxima: The Block Maxima (BM) method 
also known as Annual maxima is a fundamental 
approach in extreme value theory consist of 
dividing the periodic observation period into    
non-overlapping periods of equal size restricts 
attention to maximum observation in each     
period. Let ��,��,…  be independently and 
identically distributed random variable with 
distribution function F. Define for � = 1,2,... and 
� = 1,2,...�,  
 
The BM =max(���)���� �� ��                       (1) 

 
Thus, the � � �  observations are divided into k 
blocks of size n, i.e � =  � � �, total number of 
observations, [9]. 
 
The generalized extreme value distribution can 
be fitted to the series of block maxima 
��,��,… ,�� . In most cases, environmental 
application to the length of the block is usually 
one year and then we use the data as annual 
maximum ��. 
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The Generalized Extreme Value Distribution: 
The three types of limiting arising distribution 
function introduced in the theorem 1 can be 
combined into one family of distribution known as 
Generalized Extreme Value (GEV) distribution 
function of the form. 
 

  �(�:� ,�,�)= exp�− � 1 + � �
 ���

�
��

��

�
�             (2) 

 

Equation (2) was defined when ��: 1 + �
��� 

�
 >

 0,  −∞ <� <∞,  � > 0 and  −∞ <� <∞. where,  �,  
�,� is the location, scale and shape parameters 
respectively, Von Mises (1954) and Jenkinson 
(1955). 
 

2.1 Methods of Estimation 
 
Method of maximum likelihood estimation: 
This method was established by R.A. Fisher, 
which has become the most popular methods of 
estimation, due to its good theoretical properties 
(unbiased, consistency, normally distributed and 
efficient) greatly for large sample. Let a sample 
of n random variables ��,��,...,��  where each 
random variable is distributed according to a 
probability giving a density function �(�,�) with 
�,�,� , where \�����  is the parameter space. 
The joint density function for iid  ��,��,...,��  is 
 

�(��,��,...,�� ∣∣� )= �(�� ;�).�(��;�),...,�(��;�) (3) 
 

Suppose ��,��,...,��  are fixed where �  is the 
function's variable and is allow to vary, then the 
likelihood function will be: 
 

�(�;��,��,...,��)= �(��,��,...,�� ∣�)= ∏ �(��;�) 
�
_(���)    (4) 

 

Bayesian estimation: Suppose the data 
� = (��,...,��)  are random variable with a 
density from a parametric family � =
 { �(�;�):� � Θ }.Also let the prior beliefs about � 
be formulated and defined by the probability 
density function �(�) with no reference to the 
data. Then the likelihood for � is  
 

 �(�/�)= �(�/�) 
            =  ∏ �(��;�)

�
_(���)  

 

Then the prior information and the likelihood can 
be combined using bayes's theorem to give a 
posterior distribution for � as follows; 
 

�(� / �)=
�(�)�(�\�) 

(�(�)
 

             =  
�(�)�(�/�) 

∫ �(�)�(�/�)
 
�

                                         (5) 

i.e  �(�/�)∝  �(�)×  �(�/�) =  i.e ���������∝
 ����� ×  ������ℎ��� 
 

GEV maximum likelihood: Fitting the GEV 
distribution to a given data historical dataset 
there is need to estimate the parameters of the 
model(�,�,�). To estimate parameter, one of the 
common way is maximum likelihood estimation. 
Supposed that � = {��,...,�� } are independent 
variables having the GEV distribution � ≠ 0. 
 

 �(�:� ,�,�)= exp�− � 1 + � �
 ���

�
��

��

�
�             (6) 

 

and consequently the probability density function 
(pdf) is 
 

 
�

�
� 1 + � �

 ���

�
��

�(
�

�
��)

                                         (7) 

 

defined when  { �: 1 + �
��� 

�
 >  0 } ,   − ∞ < � <

∞,� >  0. 
 

The likelihood is then defined as �(�,�,� )=
�(�:� ,�,�) 
 

�(�,�,� )=
�

��
∏ �1 + � �

 ����

�
��

�
�

�
���

�
��� exp��1 +

� ��−��1�                                                       (8) 

 

The maximum likelihood Estimators (MLE) 

(�,� �,� ��) which maximise �(�,�,� ) also maximise 
ℓ(�,�,� ) the log-likelihood function: 
 

 ℓ(�,�,�)= −�����− �1 +
�

�
�∑ log�1 +�

���

� ��−��−�=1�1+� �−�−��−1�                     (9) 

 
when � = 0 , the Gumbel limit of the GEV 
distribution in equation (9) is used, similarly to 
obtain 
 
 ℓ(�,�)= −�����− ∑ �

 ����

�
�− ∑ exp�− �

 ����

�
���

���
�
���      (10) 

 

The MLEs (�,� �,� ��)  are obtained by maximizing 
equations (9) and (10) with respect to the vector 
(�,�,� )  under the constraints 1 + �(�� − �)/� >
0  ��� � = 1,2,...,� using numerical techniques. 
 
Prior Elicitation: The aim of eliciting process is 
to minimize the impact of biases inherent in 
surfacing and capturing subjective expert 
judgment. 
 

���� ∼  ����� (��,��) ��,��  > 0         � = 1,2,3  (11) 
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The gamma parameters are obtained by 
measures of location variability in prior belief. Let 
����  and ����� be the mean and variance 

respectively of a random variable ����  where 

���� ∼ �����(��,��)  It is easily shown that 

�� = ������
�
/(�����)   and �� =

�����

������
 ��� � = 1,2,3. 

 
From (10) and (11), the joint prior for the  ���  is 

found to be  
 

�� ���,���,����∝  ���
���������− ����� �∏ ���� −

�
���

���−1��−1exp−�����−���−1,                     (12) 

 
The Jacobian of the transformation  ���,���,

��� ( 0 ≤  ��� ≤  ��� ≤  ���) → (μ,σ,ξ)  leads 

directly to the prior in terms of the GEV 
parameters.  The Jacobian is given by 
 
�→ (μ,σ,ξ)=

−
�

��
{[ ���(1 − ��)���(1 − ��)]

��� ����−���(1 − ��)�−

���−���1−�3  +  
���1−�1���1−�3−�log−log1−�3−log−log1−�1+ 
���1−�1���1−�2−�[ ���−���1−�1−���−���1−�2]}                                                
(13) 

 
The construction leads to the prior density: 
 

 �(�,�,�)∝ �∏ ����
�����

��� exp�
��

��
�,                      (14) 

 

provided that ��� <  ��� <  ���  and �  is the 

Jacobian transformation from ���,���,���   →
(μ,σ,ξ),J(μ,σ,ξ)  which can be further simplified 
as: 
 

 �(�,�,�)∝  ���
��
�
�� ���� −

��

�
�× ∏ ���� −

�
���

���−1�13−1exp −�13���−���−1×J(μ,σ,ξ)            (15) 

 

then the posterior is 
�(�,�,�/�)∝ �(�,�,�) �(�,�,�/�) 
 

3. ANALYSIS AND DISCUSSION OF 
RESULTS 

 
3.1 Exploratory Data Analysis 
 
Table 1 shows the summary of the rainfall data in 
Calabar, Ikeja, and Edo, it can be deduced that 
the highest rainfall was recorded in Calabar with 
881.4 mm while the lowest rainfall was recorded 
in Ikeja with 619.5 mm. The standard deviation is 
also high in Calabar which indicating a high level 
of fluctuations of the rainfall data. There is also 
evidence of positive skewness in all the three 

locations, which means that the right tail is 
particularly extreme, an indication that the 
flooding data has non-symmetric pattern. 
 

Fig. 1 shows the monthly rainfall in Calabar over 
the period of January 1971- December 2016 and 
we see some extreme rainfall (>  600��) over 
the period which can also be used as a suspect 
to an outlier. It can be deduced that the data is 
skewed to right and more of the data are 
between 200 and 400. It also displays the box-
plot of rainfall data in Calabar, it can also be 
seen that there are presence of  outliers in the 
data with some data fall above the 3rd quartile 
value of the data. 
 

Fig. 2 shows the time plot for rainfall data in 
Ikeja. It can be deduced that the data is skewed 
to right and more of the data are between 150 
and 250. It can also be deduced that there are 
presence of  outliers in the data with some data 
fall above the 3rd quartile value of the data. 
 

Fig. 3 displays the time, density and box plots for 
Edo rainfall data. It can be deduced that the data 
is skewed to right and more of the data are 
between 150 and 300 in Edo. It can be 
concluded that there are presence of outliers in 
the data with some data fall above the 3�� 
quartile value of the data. 
 

3.2 Estimation Parameter 
 
Prior Elicitation: Table 2 shows the elicited prior 
median and 90% quantiles for the three 
locations, Calabar, Ikeja and Edo states. The 
elicitation of prior using quantile approach has a 
solid hypothetical understanding and practical 
use to real life data, therefore, the model 
developed in this study can now serve as a tool 
to Nigerian meteorological agency to monitor 
extreme rainfall in Calabar, Ikeja and Edo due to 
climate change. 
 

Estimation of Parameters for Calabar: Table 3 
shows the summary of results for the parameter 
estimations, standard errors and 95% C.I using 
Maximum Likelihood Estimation (MLE) and 
Bayesian methods for Calabar rainfall data. For 
the MLE, the estimates for the parameters 
���� ;  535.7939,107.2431,−0.14194  with the 
standard errors; 17.5216, 12.1665, 0.09668, and 
their 95% confidence intervals; [501.4521,
570.1357] for � , [83.3972,131.0891] for �   and 
[−0.33143,0.04755] for  �  respectively. For the 
Bayesian non informative approach, the 
parameter estimates were ; 538.9323,100.8245,
0.7860 with the standard errors, 5.4191,1.02819,



0.78606 and their 95% confidence intervals 
[531.3111,552.5534],[100.8093,104

[0.77066,0.8015] for �̂,��,  and ��

While for the Bayesian informative 
estimates were: 540.3314,102.25397
 

Table 

Location MIN 1st Qu. Median
Edo 0.00 51.88 157.20
Calabar 0.00 84.55 228.55
Ikeja 0.00 33.75 95.15

Fig. 1. Pattern, density and box plots for 
 

Fig. 2. Pattern, 
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95% confidence intervals were; 
104.8390]  & 

� ��  respectively. 
 approach, the 
25397,0.8204 

with the standard errors 5.02332
0.00820  and the 95% confidence intervals for 
these parameters �̂,��,  &
[540.0795,551.6485],[96.24278,110
[0.29078,0.8407] respectively. 

Table 1. Summary of the data 
 

Median Mean 3rd Qu. Max Std. Dev Skew
157.20 180.67 283.80 722.5 145.447 0.6797
228.55 246.33 370.38 881.4 185.794 0.5876
95.15 122.42 187.07 619.5 110.807 1.2342

 

 

density and box plots for Calabar rainfall data 

 

, density and box plots for Ikeja rainfall data 

 
 
 
 

; Article no.JSRR.54060 
 
 

02332,1.02254,
95% confidence intervals for 

� & ��  were; 
110.3076 ], and 

Skew Kur. 
6797 -0.1583 

876 -0.1698 
1.2342 1.6567 

 

 



Fig. 4 shows the model fits, densities, return 
levels and convergence of the simulations for 
Calabar using the MLE and Bayesian methods. 
In both, the Bayesian out performed the MLE 
approach. 
 

Estimation of Parameters for Ikeja: 
shows the summary of results for the parameter 
estimations, standard errors and 95% C.I using 
MLE and Bayesian methods for 
data. For the MLE, the estimates for the 
parameters ����; 306.1460,77.9708
with the standard errors; 13.403
0.1365, and their 95% confidence intervals
[276.8762,332.4159] for � , [58.3313
�  and [−0.26484,0.27000] for � respectively
the Bayesian non informative approach
estimates ����; 328.3944,151.
 

Fig. 3. Pattern, 

Table 2. Elicited 

Location Quantile Median
Calabar �� 131.13

�� 92.209
�� 152.25

Ikeja �� 87.43
�� 54.45
�� 134.54

Edo �� 123.43
�� 98.211
 �� 140.456
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4 shows the model fits, densities, return 
levels and convergence of the simulations for 
Calabar using the MLE and Bayesian methods. 
In both, the Bayesian out performed the MLE 

Estimation of Parameters for Ikeja: Table 4 
for the parameter 

95% C.I using 
 Ikeja rainfall 

estimates for the 
9708,0.00269 

s; 13.4032, 10.0203, 
95% confidence intervals; 

3313,97.6102] for 
respectively. For 

approach, the 
.0381,1.69384 

with standard errors; 3.283779
0.01692956, and their 95% confidence intervals 
were; [321.9583,334.8304
153.9983] and [−1.4498,4.4705] for   

�� respectively. Also, for the Bayesian informative
approach, the parameter estimations were: 
335.0072,156.3385,1.832606  with standard 
errors 3.250072,1.503385,0.01232606
95% confidence intervals these 

�̂,��,  & ��  were; [321.8801,351.9327
178.24580]  & [0.2703156,2.1691884 ]

 
Fig. 5 shows the model fits, densities, return 
levels and convergence of the simulations for 
Ikeja using the MLE and Bayesian methods. In 
both, the Bayesian out performed the MLE 
approach. 

 
, density and box plots for Edo rainfall data 

 
Elicited prior median and 90% quantiles 

 
Median 90% � �
131.13 153.66 24.5932 0.04206
92.209 130.34 11.8631 0.1933
152.25 152.25 25.3267 0.07012
87.43 105.33 13.5089 0.03847
54.45 93.45 10.3096 0.02690
134.54 169.34 17.5300 0.04329
123.43 142.88 19.980 0.04426
98.211 128.76 8.1047 0.01692
140.456 185.41 23.5435 0.06545

 
 
 
 

; Article no.JSRR.54060 
 
 

283779,1.510306,
95% confidence intervals 

8304],[148.0780,
for   �̂,��,  and 

Bayesian informative 
estimations were: 

with standard 
01232606  and the 
these parameters 

9327],[92.23266,
]  respectively. 

5 shows the model fits, densities, return 
levels and convergence of the simulations for 
Ikeja using the MLE and Bayesian methods. In 
both, the Bayesian out performed the MLE 

 

� 
0.04206 
0.1933 
0.07012 
0.03847 
0.02690 
0.04329 
0.04426 
0.01692 
0.06545 
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Table 3. Summary of results for the different methods of estimation in analysis Calabar 
 

Method MLE Bayesian (Non 
informative) 

Bayesian (Quantile 
Approach) 

Estimates Location 535.7939 538.9323 540.3314  
Scale 107.2431 100.8245 102.25397  
Shape -0.14194 0.7860 0.8204  

95% 
Confidence 
Interval 

Location [501.4521, 570.1357] [531.3111, 552.5534] [540.0795, 551.6485]  
Scale [83.3972, 131.0891] [100.8093,104.8390] [96.24278, 110.3076] 
Shape [-0.33143, 0.04755] [0.77066, 0.8015] [0.29078, 0.8407]  

Standard 
Error  

Location 17.5216 5.4191 5.02332  
Scale 12.1665 1.02819 1.02254  
Shape 0.09668 0.78606 0.00820  

 

 
 

Fig. 4. Bayesian, MLE and convergence test for Calabar rainfall data 
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Estimation of Parameters for Edo: Table 5 
shows the summary of results for the parameter 
estimations, standard errors and the 95% C.I 
using MLE and Bayesian methods for the Edo 
rainfall data. For the MLE, the estimates for the 
parameters ����; 413.3447,96.1272,−0.2135 
with the standard errors; 15.4349, 10.4103, 
0.0765 and their 95% confidence intervals were; 
[383.0928,443.5965]  for �,[75.7234,116.5410] 
for �  and [−0.36351,− 0.06349]  for � 

respectively. For the Bayesian non informative, 
the estimates ����; 397.4792,199.825,

1.624367  with the standard errors, 
3.974567,1.99815,0.016243  and their 95% 
confidence intervals for these parameters were; 
[389.6891,405.2692],[195.9087,203.7413]  & 
[1.592532,1.656202] for �̂,��,  & ��  respectively. 
Similarly, for the Bayesian informative, the 
estimates were: 393.3801,212.94210,1.77703 
with the standard errors 3.93380,1.9471,
0.01277 and. their 95% confidence intervals for 
these parameters �̂,��,  &  ��  were; 
[386.1716,430.8676], [90.73176,251.27909] & 
[0.261694,2.233644] respectively. 

 

 
 

Fig. 5. Bayesian, MLE and convergence test for Ikeja rainfall data 
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Fig. 6. Bayesian, MLE and convergence test for Edo rainfall data 
 

Table 4. A summary of results for the different methods of estimation in analysis Ikeja 
 

Method MLE Bayesian (Non 
informative) 

Bayesian (Quantile 
Approach) 

Estimates Location 306.1460 328.3944 335.0072 
Scale 77.9708 151.0381 156.0072 
Shape 0.00269 1.69364 1.83261 

95% 
Confidence 
Interval 

Location [279.8762, 332.416] [321.9583, 334.8304] [321.8801, 351. 9327] 
Scale [58.3313, 97.6102] [148.0780, 153.9983] [92.23266, 178.24580] 
Shape [-0.26484, 0.27000] [-1.44984, 4.470451] [0.2703156, 2.1691884] 

Standard 
Error 

Location 13.4032 3.283779 3.250072 
Scale 10.0203 1.510306 1.503385 
Shape 0.13645 0.0169296 0.0123261 
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Table 5. A summary of results for the different methods of estimation in analysis Edo 

 

Method MLE Bayesian(GEV) Bayesian (Quantiles 
Approach) 

Estimates Location 413.3447 397.4792 393.3801 

Scale 96.1272 199.825 212.94210 

Shape -0.2135 1.62437 1.77703 

95% 

Confidence 

Interval 

Location [383.0928,443.5965] [389.6891, 405.2692] [386.1716, 430.8676] 

Scale [75.7234, 116.5410] [195.9087, 203.7413] [90.73176, 251.27909] 

Shape [-0.36351, -0.06349] [1.59253, 1.656202] [0.26169, 2.23264] 

Standard 

Error 

Location 15.4349 3.97459 3.93380 

Scale 10.4103 1.99815 1.9471 

Shape 0.07654 0.016243 0.012770 

 
Fig. 6 shows the model fits, densities, return 
levels and convergence of the simulations for 
Edo using the MLE and Bayesian methods. In 
both, the Bayesian out performed the MLE 
approach. 

 
4. SUMMARY AND CONCLUSION 
 
In this research, the Nigerian Extreme Rainfall 
data in the three locations follow a Generalized 
Extreme Value (GEV) Distribution. The 
parameter estimations for Bayesian informative 
approach was the highest in most locations with 
the minimum standard errors in all the locations, 
followed by the Bayesian non informative and the 
least was the Maximum Likelihood Estimation 
with the highest standard errors in all the three 
locations. The parameter estimates for the three 
methods fall within the 95% confidence with the 
closest range of the Bayesian informative 
approach. Also, the prior elicitation for 
informative approach has a solid hypothetical 
underpinning and practical use to real life data. 
Therefore, the Bayesian informative approach is 
the best of the three techniques for modelling 
Nigerian extreme rainfall data in these locations. 
Also, the rainfall data for all the three locations 
were positively skewed which implies the right 
tail is particularly extreme; an indication for the 
flooding data witiout  a symmetric pattern and 
therefore has much negative effects on the 
agricultural produce. 
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