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Abstract 
 

This study discusses the effects of missing observations on Buys-Ballot estimate when trend-cycle 
component of time series is linear. The method adopted in this study is Decomposing Without the 
Missing Value (DWMV) which is used to estimate missing observations in time series decomposition 
when data are arranged in a Buys-Ballot table. The model structure used is multiplicative. Results show 
that the trend parameters with and without missing observations have insignificant effect while there are 
significant differences in the seasonal indices only at the season points where missing observations 
occurred in the Buys-Ballot table. 

 
 
Keywords: Time series decomposition; missing observation; trend parameter; seasonal effect; 

multiplicative model; buys-ballot table. 
 
 

Original Research Article 



 
 
 

Dozie et al.; AJPAS, 6(3): 13-24, 2020; Article no.AJPAS.54291 
 
 
 

14 
 
 

1 Introduction 
 
A common problem that is frequently encountered in time series data is missing observations. This is so 
since data are records taken through time. Missing data occurred because of several problems, such as 
technical fault or human errors (the object of observation did not give sufficient data to the observer) [1]. 
Also data that is suspected or known to have been observed erroneously can be regarded as having missing 
values. Brockwell and Davis [2] observed that missing values at the beginning or the end of the time series 
are simply ignored while intermediate missing values are considered serious flaws in the input time series. 
 
Pratama et al. [1], in a study on a review of missing values handling methods on time-series data pointed out 
that estimation technique is probably the best option of missing values handling, since to accomplish certain 
work the complete dataset is required and some dataset have dependent variable which is impossible to 
delete the missing values as it can disrupt the data itself. 
 
This article considers the effects of missing observations on Buys-Ballot estimate when trend-cycle 
component of time series is linear. The Buys-Ballot method is primarily used for the decomposition of a 
relatively short term period such that the trend and cyclical components are jointly combined [3]. This 
estimation procedure based on the Buys-Ballot table is particularly useful since it only involves computing 
the column and row totals and averages of the table. 
 
Iwueze et al. [4] in a study on use of Buys-Ballot table in Time Series Analysis, observed that the choice of 
appropriate model for decomposition is based on the seasonal averages and standard deviations. Also, 
according to Okereke et al. [5], in a study on the chain base, fixed base and classical methods of 
decomposition of time series with the cubic trend component with emphasis on the additive model pointed 
out that the chain base method are both used for time series decomposition, the recommended chain base 
method when a case of multicollinearity has been established in a time series model. 
 
Buys-Ballot decomposition models are 
 
Additive Model 
 

tttt eSMX 
                                 (1) 

 
Multiplicative Model: 
 

tttt eSMX 
                                 (2) 

 
and Mixed Model 
 

tttt eSMX 
.                                 (3) 

 
It is always assumed that the seasonal effect, when it exists, has period s, that is, it repeats after s time 
periods. 
 

tallfor,SS tst                                  (4) 
 
For Equation (1), it is convenient to make the further assumption that the sum of the seasonal components 
over a complete period is zero, ie, 
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s
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jt 




.                                 (5) 
 
Similarly, for Equations (2) and (3), the convenient variant assumption is that the sum of the seasonal 
components over a complete period is s. 
 

sS
s

1j
jt 




.                            (6) 
 
In this study, one hundred and twenty (120) birth rate were considered from life spring specialist hospital 
Ikenegbu Owerri, Imo State, Nigeria from January 2009 to December 2018 in which five (5) births were not 
accounted for. The observed data was transformed and the trend parameters and seasonal indices estimated. 
The process was repeated with the estimated missing observations replaced. The estimated parameters and 
seasonal indices with missing values and without missing values were compared. This study is limited to 
time series decomposition with only linear trend and seasonal components combined in the multiplicative 
form, when more than one observations is missing in the Buys-Ballot table. The emphasis is to estimate the 
missing observations in descriptive time series with linear trend and seasonality using Decomposing without 
the Missing Value. [6] proposed estimation of missing observations using different alternatives in stationary 
term series for autoregressive moving average models. According to him, missing observations occur 
commonly in descriptive time series and in some cases it is important to estimate them. [7] provided the 
definition and computation of marginal likelihood of an ARIMA model with missing data. They used the 
univariate version of the modified Kalman filter introduced by [8]. They started how to predict and 
interpolate missing values and obtain the mean squared error of the estimate. The method obtained for the 
estimation of models for discrete time series in the presence of missing observations are those of [9]. 
 

1.1 Estimation methods for replacing missing observations 
 
The methods of estimating missing observations in time series decomposition include Mean Imputation, 
Series Mean, Linear Interpolation, Linear trend at point, Row Mean Imputation, Column Mean Imputation 
and Decomposing without the Missing Values. [10] observed that Decomposing without the Missing Value 
gave the best result when compared with the other six methods. In this study, we intend to use Decomposing 
without Missing Value (DWMV) to estimate missing observations. 
 

1.2 Decomposing Without the Missing Value (DWMV) 
 
This method decomposes the remaining data series without the missing value to obtain the trend at point 

 1i S j 
 to be 

 

   ˆˆ1 1M i S j a b i s j     
                 (7) 

 
Hence, the estimate at that point becomes 
 

   1
ˆˆ ˆ 1 ji s j

X M i S j S
 

   
                   (8) 
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2 Materials and Methods 
 
According [11], if a time series contains seasonal affects with period s (length of the periodic interval), we 
expect observations separated by multiples of � to be similar:��  should be similar to �� ± ��, � = 1,2,3, …m . 
To analyze the data, it is helpful to arrange the series in a two – dimensional table (Table 1), according to the 
period and season, including the totals and/or averages. Such two – way tables that display within period 
pattern, that are similar from period to period are known as Buys – Ballot tables, [12] credits these 
arrangements to Buys-Ballot [13]. 
 

Table 1 displays the within periods relationship, which represent the correlation among observations in the 

row  2 1 1 2..., , , , , ,...t t t t tX X X X X     and between – periods relationship which represent the correlation 

among observations in the column,  2 2..., , , , ,...t s t s t s t sX X X X    . The within periods relationship 

represent the non-seasonal components of a study series while the between periods represent the seasonal 
component of a study series. Therefore, the estimates of non-seasonal components are derivable from the 
row means while the estimates of the seasonal components are derivable from the column means. For 
seasonal data with length of period, interval, s, the Buys-Ballot naturally partitions the observed data into m-
row for easy application. 
 

Table 1. Buys - Ballots table for seasonal time series 
 

Rows/ 
Period (i) 

Columns (season) j 
1 2 ⋯ � … � ��. ���. ���. 

1 �� �� ⋯ ��  ⋯ �� ��. ���. ��� 
2 ���� ���� ⋯ ���� ⋯ X�� ��. ���. ��� 

3 ����� X���� ⋯ X���� ⋯ ��� ��. ���. ��� 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
� �(���)��� �(���)��� ⋯ �(���)��� ⋯ �(���)��� ��. ���. ���. 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
� �(���)��� �(���)��� ⋯ �(���)��� ⋯ ��� T�. ���. ���. 

�.� �.� �.� ⋯ �.� ⋯ �.� �..   

��.� ��.� ��.� ⋯ ��.� ⋯ ��.�  ��..  

��.� ��.� ��.� ⋯ ��.� ⋯ ��.�   ��.. 
 

In this arrangement each time period t is represented in terms of the period i (e.g. year) and season j (e.g. 

month of the year), as   jsit  1 . Thus, the period (row), season (column) and overall totals, means and 
variances are defined as 
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To choose the appropriate trend of the entire series, the plot of the transformed periodic averages is 
considered. The expression of the linear trend: 
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.iX a bi 
                     (9) 

 
Nwosu [14] provided the estimation of the trend parameters and seasonal indices as 
 

 ..

ˆ
ˆ 1

2

b
a X n  

                  (10) 
 

ˆ b
b

s




                                 (11) 
 

 

.
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ˆ
ˆ

2 1
2

j

j

X
S

bX j s


  
                (12) 

 

Estimation of missing observations in the transformed and original time series. To estimate the missing 
observations in the transformed data, the estimated parameters of trend and seasonal effect for multiplicative 
model is given as 
 

 ˆ ˆˆ ˆ 1ij jX a b i s j S                        (13) 
 

The exponent of the estimated missing observation in the transformed series gives the estimate of the 
missing observations in the original data 
 

Original 

 ˆ ˆˆ 1 ja b i s j S

ijX e
    

                 (14) 
 

3 Analysis 
 
The real life example is based on monthly data on number of birth rate collected from life Spring Specialist 
Hospital Ikenegbu Owerri, Imo State, Nigeria for a period of 2009 to 2018 given in Appendix A while the 
time plots of original and transformed series with missing observations are given in Figs. 1 and 2. 
 

Time 
 

Fig. 1. Time plot of the actual series on number of birth rate with missing observation (2009-2018) 
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Time 
 

Fig. 2. Time plot of the transformed series on number of birth rate with missing observation (2009-
2018) 

 

Case 1: Buys-Ballot Estimates of Trend and Seasonal Effect with Missing Observations 
 

Hence, the linear trend of the row means in the Buys-Ballot table with missing observations is given as: 
 

3.168 0.1820iX i 
                                                                                                     (15) 

 

Using (10) and (11) 
 

0.1820ˆ 0.0152
12

b  
 
 ˆ 4.1687 0.0076 120 1 3.2491a    

 
 

Using (12) 
 

 
.ˆ

4.1687 0.0076 2 12 1

j

j

X
S

j


  
 

 

Table 2. Estimates of trend and seasonal effect with missing observations 
 

j
 jX

 
jS
 

1 3.5682 0.8735 
2 4.3590 1.0631 
3 4.1990 1.0203 
4 4.2630 1.0320 
5 4.0640 0.9602 
6 4.2307 1.0167 
7 4.1050 0.9829 
8 4.4190 1.0542 
9 4.3492 1.0339 
10 4.1980 0.9994 
11 4.1220 1.0073 
12 3.8537 0. 9365 

1

ˆ
s

j
j

S



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Case 2: Buys-Ballot Estimates of Trend and Seasonal Effect without Missing Observations 
 
The linear trend of row means in the Buys-Ballot table without missing observations is given as 
 

3.2107 0.1719iX i 
 

 
Using (10) and (11) 
 

0.1719ˆ 0.0143
12

b  
 

 ˆ 4.156 0.0072 120 1 3.2893a    
 

 
Using (12) 
 

 
 

.ˆ
4.1563 0.0072 2 12 1

j

j

X
S

j


  
 

 
Table 3. Estimates of trend and seasonal effect without missing observations 

 

j  jX
 

ˆ
jS
 

1 3.686 0.9041 
2 4.3591 1.0654 
3 4.199 1.0227 
4 4.263 1.0346 
5 4.064 0.9829 
6 4.047 0.9754 
7 4.105 0.9859 
8 4.419 1.0577 
9 4.391 1.0474 
10 4.198 0.9979 
11 4.122 0.9768 
12 4.022 0. 9492 

1

ˆ
s

j
j

S



 

 12.0000 

 
Estimation of Missing Observations in Transformed Data 
 
Estimation of transformed and original missing observations 
 
Using (13) 
 

Transformed 
 10,1

ˆ 3.2491 0.0076 10 1 12 1 0.8735 3.9727X          
 

Transformed 
 8,6

ˆ 3.2491 0.0076 8 1 12 6 1.0167 3.9445X          
 

Transformed 
 2,9

ˆ 3.2491 0.0076 2 1 12 9 1.0339 3.4141X          
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Transformed 
 8,9

ˆ 3.2491 0.0076 8 1 12 9 1.0339 3.9799X          
 

Transformed 
 7,12

ˆ 3.2491 0.0076 7 1 12 12 0.9365 3.8470X          
 
Using (14) 
 

Original 
3.9727

10,1
ˆ 53.1384 53X e  �

  
 

Original 
3.9445

8,6
ˆ 51.6505 52X e  �

  
 

Original 
3.4141

2,9
ˆ 303816 30X e  �

  
 

Original 
3.9799

8,9
ˆ 53.5117 53X e  �

  
 

Original 
3.8470

7,12
ˆ 4.68523 47X e  �

  
 

Table 4. Buys-Ballot estimates of parameters of trend and seasonal effect with and without missing 
observations 

 
Parameter With missing values Without missing values Difference 

â  
3.2491 3.2893 0.040 

b̂  
0.0076 0.0072 0.0004 

1Ŝ
 

0.8735 0.9041 0.031 

2Ŝ
 

1.0631 1.0654 0.002 

3Ŝ
 

1.0203 1.0227 0.002 

4Ŝ
 

1.0320 1.0346 0.003 

5Ŝ
 

0.9802 0.9829 0.003 

6Ŝ
 

1.0167 0.9754 0.041 

7Ŝ
 

0.9829 0.9859 0.003 

8Ŝ
 

1.0542 1.0577 0.004 

9Ŝ
 

1.0073 1.0474 0.014 

10Ŝ
 

0.9994 0.9979 0.002 

11Ŝ
 

1.0073 0.9768 0.0305 

12Ŝ
 

0.9365 0.9492 0.013 

 
The difference in the trend parameters and seasonal effects with and without missing observations are 
contained in Table 4. From Table 4, it is clear that, the trend parameters with and without missing 
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observations have an insignificant difference. Approximately, they are the same. This is indication that 
missing observations have insignificant effect on trend parameters. For seasonal effects, there are significant 
differences with and without missing observations. Significantly, the difference occurred at 

1,6,9,9,12j  . These are the points in the seasons of the Buys-Ballot table that had missing observations. 

The original estimates for the unobserved number of Birth rate are fifty three (53) in January 2018, fifty two 
(52) in June 2016, thirty (30) in September 2010, fifty three (53) in September 2016 and forty seven (47) in 
December 2015. 
 

4 Conclusion 
 
This paper has discussed the effects of missing observations on Buys-Ballot estimate of time series 
components for a linear trending curve. Estimates of missing observations in descriptive time series with 
linear trend and seasonality when more than one observations are missing in the Buys-Ballot table are 
discussed. The model structure adopted is multiplicative. Results show that missing observations have 
insignificant effect on trend parameters but significant in seasonal indices. 
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Appendix A. Buys-Ballot table for the actual data on number of Birthrate with missing observation 
(2009-2018) 

 
Year Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec. 

.iX
 

2
.i  

2009 30 54 7 44 65 70 51 70 48 57 50 44 49.17 309.79 
2010 60 86 80 66 8 55 9 72 - 25 10 17 47.42 972.81 
2011 2 33 43 9 50 24 24 56 39 46 39 42 33.92 266.27 
2012 35 45 51 60 52 40 43 46 39 35 53 58 46.42 71.36 
2013 12 80 81 71 66 80 57 60 66 59 63 13 59.00 541.27 
2014 72 84 89 94 93 90 91 87 93 58 69 96 84.67 142.24 
2015 92 75 90 96 93 67 94 112 90 101 93 - 91.42 129.54 
2016 94 126 113 124 92 - 117 90 - 96 113 103 99.25 923.84 
2017 94 131 167 173 42 162 155 134 160 150 121 84 131.10 1582.40 
2018 - 149 115 152 149 119 160 170 200 150 140 158 148.08 594.27 

jX.
 

60.6 86.3 83.6 88.9 71.0 71.8 80.1 89.7 92.8 77.7 75.1 70.9   

2
. j

 

1521.6 1474.2 1941.6 2493.7 1462.9 2007.1 2736.3 1504.9 2782.0 2011.6 1657.7 1992.8   

 
Appendix B. Buys-Ballot table for the transformed data on number of Birthrate with missing 

observation (2009-2018) 
 

Year Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
.iX
 

2
.i  

2009 3.401 3.989 1.946 3.784 4.174 4.249 3.932 4.249 3.871 4.043 3.912 3.784 3.778 0.388 
2010 4.094 4.454 4.382 4.190 2.079 4.007 2.197 4.277 - 3.219 2.303 2.833 3.458 0.894 
2011 0.693 3.497 3.761 2.197 3.912 3.178 3.178 4.025 3.664 3.829 3.664 3.738 3.278 0.902 
2012 3.555 3.807 3.932 4.094 3.951 3.689 3.761 3.829 3.664 3.555 3.970 4.060 3.822 0.034 
2013 2.485 4.382 4.394 4.263 4.190 4.382 4.043 4.094 4.190 4.078 4.143 2.565 3.934 0.448 
2014 4.277 4.431 4.489 4.543 4.533 4.410 4.511 4.466 4.533 4.060 4.234 4.564 4.428 0.024 
2015 4.522 4.317 4.410 4.564 4.533 4.205 4.543 4.719 4.410 4.615 4.533 - 4.505 0.017 
2016 4.543 4.836 4.727 4.820 4.522 - 4.762 4.410 - 4.564 4.727 4.635 4.663 0.443 
2017 4.543 4.875 5.118 5.153 3.738 5.088 5.043 4.898 5.075 5.011 4.796 4.431 4.814 0.167 
2018 - 5.004 4.745 5.024 5.004 4.779 5.075 5.136 5.298 5.011 4.942 5.063 5.007 0.027 

jX.
 

3.568 4.359 4.199 4.263 4.064 4.231 4.105 4.419 4.349 4.198 4.122 3.964   

2
. j

 

1.589 0.235 0.779 0.709 0.627 0.623 0.807 0.167 0.311 0.355 0.585 0.652   

 
Appendix C. Buys-Ballot table for the actual data on number of Birthrate without missing observation 

(2009-2018) 
 

Year Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec. 
.iX

 

2
.i

 
2009 30 54 7 44 65 70 51 70 48 57 50 44 49.17 309.79 
2010 60 86 80 66 8 55 9 72 81 25 10 17 47.42 972.81 
2011 2 33 43 9 50 24 24 56 39 46 39 42 33.92 266.27 
2012 35 45 51 60 52 40 43 46 39 35 53 58 46.42 71.36 
2013 12 80 81 71 66 80 57 60 66 59 63 13 59.00 541.27 
2014 72 84 89 94 93 90 91 87 93 58 69 96 84.67 142.24 
2015 92 75 90 96 93 67 94 112 90 101 93 94 91.42 129.54 
2016 94 126 113 124 92 11 117 90 112 96 113 103 99.25 923.84 
2017 94 131 167 173 42 162 155 134 160 150 121 84 131.10 1582.40 
2018 115 149 115 152 149 119 160 170 200 150 140 158 148.08 594.27 

jX.
 

60.6 86.3 83.6 88.9 71.0 71.8 80.1 89.7 92.8 77.7 75.1 70.9   

2
. j

 
1521.6 1474.2 1941.6 2493.7 1462.9 2007.1 2736.3 1504.9 2782.0 2011.6 1657.7 1992.8   
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Appendix D. Buys-Ballot table for the transformed data on number of Birthrate without missing 
observation (2009-2018) 

 
Year Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec. 

.iX
 

2
.i  

2009 3.401 3.989 1.946 3.784 4.174 4.249 3.932 4.249 3.871 4.043 3.912 3.784 3.778 0.388 
2010 4.094 4.454 4.382 4.190 2.079 4.007 2.197 4.277 4.394 3.219 2.303 2.833 3.458 0.894 
2011 0.693 3.497 3.761 2.197 3.912 3.178 3.178 4.025 3.664 3.829 3.664 3.738 3.278 0.902 
2012 3.555 3.807 3.932 4.094 3.951 3.689 3.761 3.829 3.664 3.555 3.970 4.060 3.822 0.034 
2013 2.485 4.382 4.394 4.263 4.190 4.382 4.043 4.094 4.190 4.078 4.143 2.565 3.934 0.448 
2014 4.277 4.431 4.489 4.543 4.533 4.410 4.511 4.466 4.533 4.060 4.234 4.564 4.428 0.024 
2015 4.522 4.317 4.410 4.564 4.533 4.205 4.543 4.719 4.410 4.615 4.533 4.543 4.505 0.017 
2016 4.543 4.836 4.727 4.820 4.522 2.398 4.762 4.410 4.719 4.564 4.727 4.635 4.663 0.443 
2017 4.543 4.875 5.118 5.153 3.738 5.088 5.043 4.898 5.075 5.011 4.796 4.431 4.814 0.167 
2018 4.745 5.004 4.745 5.024 5.004 4.779 5.075 5.136 5.298 5.011 4.942 5.063 5.007 0.027 

jX.
 

3.568 4.359 4.199 4.263 4.064 4.231 4.105 4.419 4.349 4.198 4.122 3.964   

2
. j

 

1.589 0.235 0.779 0.709 0.627 0.623 0.807 0.167 0.311 0.355 0.585 0.652   
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