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Abstract 
 

Bayes factor is a major Bayesian tool for model comparison especially when the model priors are the 
same. In this paper, the Savage-Dickey Density Ratio (SDDR) is used to derive the Bayes factor to select 
a model from two competing models under consideration in a normal linear regression with an 
independent normal-gamma prior. The Gibbs sampling technique for the joint posterior distribution with 
equal prior precision for both the unrestricted and restricted models is used to obtain the model 
estimates. The result shows that the Bayes factor gave more support to the unrestricted model against the 
restricted and was consistent irrespective of changes in sample size. 
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1 Introduction 
 
Model comparison is the process by which models are compared to one another and the best model is 
selected using a particular model criterion. This is an effective Bayesian inference which normally requires 
choosing of the best model for the specific situation under investigation [1]. Usually in Bayesian paradigm, 
models are compared using Bayes factor, [2,3,4]. Bayes factors are notoriously difficult to compute, and the 
Bayes factor is only defined when the marginal density of y (dependent variable) under each model is 
proper. However, Bayes factors are easy to approximate with the Laplace-Metropolis Estimator, [5]. 
Although, initially the p-value of 0.05 was used for model comparison in Bayesian model selection but later 
showed that it cannot give much evidence against the null hypothesis [6,7]. Just of recent, [8] and [9] 
proposed computationally convenient default priors with desirable theoretical properties for the Bayes 
factor. Also, [10] pointed out the important of priors in Bayes factor when additional information is available 
for a model selection process. The Bayes factor uses the ratio of marginal likelihoods of the reduced model 
to the unreduced model. The SDDR is another way of writing Bayes factor for comparing nested models, 
using non-informative prior (part of the limitations of the SDDR. A simple method for approximating the 
Bayes factor that generalizes a method which in turn is attributed to the idea to Savage but did not compute 
for the likelihood, see [11,12,13,14,15]. The use of posterior simulation to compute Bayes factor which is 
applicable whenever the null hypothesis is a nested hypothesis was considered in the work of several authors 
[16,17]. The generalized version of the SDDR for representation of the Bayes factor of nested statistical 
models, the new version taking the form of a random Nikodym derivative and thus showed its applicability 
to a wider family of probability spaces than the original is shown in [18]. 
 
In this paper, the likelihood function is a multivariate normal distribution, with an independent normal-
gamma prior, giving rise to the posterior conditional density of the parameters given the data and the 
precision belonging to the multivariate normal and the precision given the data and the parameters for the 
Gamma distribution. The normal linear regression model with independent normal-gamma prior is a very 
complex and complicated Bayesian econometrics model since it does not give a familiar posterior 
distributional form. Unlike the normal linear regression model with a conjugate normal-gamma prior which 
can be solved analytically. Independent normal-gamma prior can only be solved through a posterior 
simulation technique such as the Gibbs sampler technique. Thus, the posterior distribution does not take a 
familiar distributional form given rise to a situation whereby the marginal likelihood and the predictive 
densities do not exist, which makes it difficult for model comparison except through the use of Bayes factor 
which incorporates a Bayesian tool called the Savage-Dickey Density Ratio technique for the model 
comparison, which is the main focus for this study. 
 

2 Methodology 
 
The normal linear regression model used comprised of k independent explanatory variables, with additive 
error component which is normally distributed. 
 
The model: 
 

Y = Xβ + ε (1) 
 
Where, Y is (n x 1) vector of the response variable, X is (k x k) matrix of the explanatory variables. β is the 
((k+1) x 1) vector of the regression parameters. ε is the error component which is normally independently 
and identically distributed. 
 
Suppose further, (1) has a normal linear model, y with mean Xβ and error precision  �� �

��
 , the expression for 

the likelihood density denoted by P (y/β,h) is given as: 
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Considering the Bayes Theorem (Joyce, James (2003
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A Generalization of the SDDR to derive the Bayes 
 
Bayes factor is a summary of the evidence provided by the data in favor of one scientific theory represented 
by a statistical model, [5]. Thus,  the Bayes 
likelihood: 
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In this study, it is difficult to calculate the marginal likelihood 
using SDDR to compare nested models only 
conditions are satisfied (Appendix). 

 

Let the likelihood (unrestricted model, 

 0 2| ,P h M   respectively, and the restricted model, 

h is unrestricted in each model with likelihood and prior as; 

 

2.1 The SDDR theorem  
 
Dickey [12] proposed that if and only i
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The denominator is easily calculated, since the marginal for 
 

 
The Numerator is quite difficult to obtain but the Gibbs sampler will provide output, 
1...S, then, simply averaging P(β = 
β0|y,M2). 
 

Hence;  
 

 
P(β = β0|y,M2) = E[g(β,h) |y]

 

Table 1 shows the generalized standard for accepting or rejecting a model in Bayes factor model 

comparison. It depicts the Bayes factor values for the evidence hypothesis against the null hypothesis which 

spans from 1 to 100. 

 

Table 1. The generalized standard for accepting or rejecting

 
BF21 Log10 BF
1 to 3.2 

0  to   
3.2 to 10 

   to 1
10 to 100 1 to 2 
> 100 > 2 

Note: BF21= Bayes factor 

 

3 Analysis and Discussion of Results
  
3.1 Application of Bayes factor for 
 
The data used for this study were artificially generated
explanatory variables are drawn independently from a uniform [0,1] distribution
regression coefficients; β0 = 0.0, β1 = 10
a standard normal distribution, incorporated into the linear model to obtain the response variable
using three different sample sizes, 
comparison of nested model (model 1
(unrestricted). 
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Competing model: Model 1 
 
Case 1: yj = β1X1 + β2X2 + β3X3 + β4X4 + εj 
Case 2: yj = β0 + β2X2 + β3X3 + β4X4 + εj ,     
Case 3: yj = β0 + β1X1 +  β3X3 + β4X4 + εj,                                                         
Case 4: yj = β0 + β1X1 + β2X2  + β4X4 + εj  
Case 5: yj = β0 + β1X1 + β2X2 + β3X3 + εj                 
 
True model: Model 2,   yj = β0 + β1X1 + β2X2 + β3X3 + β4X4 + εj  
 
Then, H0 : Model 1 (Restricted model)  vs  H1: Model 2 (Unrestricted model) 
 
Tables 2, 3 & 4 show estimates of the Prior, and the Posterior of the Gibbs sampler with 10,000 draws after 
the burn-ins of 1000 varying sample sizes with the prior and posterior respective standard deviations in 
parenthesis, the Gewekes Convergence Diagnostics (GCD), Numerical Standard Error (NSE), 95% Highest 
Posterior Density Interval (HPDI) and the Bayes factor (BF21) for comparing model 2 to 1 using the normal 
linear regression model with Independent Normal-Gamma prior.  
 
Table 2 shows that the true value is not far from the posterior estimates, most parameters show support for 
model 2 (unrestricted model), GCD values are less than 1.96, which shows support for convergence, 
minimal NSE. HPDI also showed support for model 2 except for the intercept’s credible interval. 
  

Table 2. The estimates when N = 15 
 

When 
N=15 

True 
value 

Prior mean 
(SD) 

Posterior 
mean (SD) 

NSE GCD HPDI [95% C.I] BF21 (βj = 0) 

β0 0 0 0.5992 0.0118 0.7882 -1.5850,  2.7879 2.60 × 10−9 
  (29.3) (1.1236)     
β1 10 17 10.3063 0.0103 -0.8112 8.3253,  12.1453 5.75 × 10−9 
  (50.4) (0.9805)     
β2 30.5 13.5 32.2139 0.8578 0.3075 30.5617,  33.953 1.62 × 10−7 
  (900.6) (0.00904)     

β3 15 1.4 15.3105 0.01 0.4146 13.4032,  17.096 6.90 × 10−8 
  (600) (0.946)     
β4 6.5 10 6.1763 0.0116 -1.013 3.9830,  8.2495 4.90 × 10−9 
  (50) (1.0992)     

 
Table 3 shows that the true value is not far from the posterior estimates, most parameters show support for 
model 2 (unrestricted model), GCD values are less than 1.96, which shows support for convergence, while 
the NSE decreased. 
 

Table 3. The estimates when N = 200 
 

When 
N=200 

True 
value 

Prior 
(SD) 

Posterior 
(SD) 

NSE GCD HPDI [95% C.I] BF21 (βj = 0) 

β0 0 0 0.0883 0.0029 0.7284 -0.4437, 0.6236 2.72 × 10−9 
  (29.3) (0.2756)     

β1 10 17 9.319 0.0025 0.1035 8.8734, 9.8009 5.91 × 10−9 
  (50.4) (0.239)     
β2 30.5 13.5 28.893 0.0026 -0.861 28.3957, 29.353 1.65 × 10−7 
  (900.6) (0.2425)     
β3 15 1.4 13.7415 0.0026 -0.468 13.2528, 14.213 7.24 × 10−8 
  (600) (0.2471)     
β4 6.5 10 6.0782 0.0025 -0.8492 5.6090, 6.5475 5.21 × 10−9 

  (50) (0.2408)     
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Table 4 shows that the true value is not far from the posterior estimates, most parameters show support for 
model 2 (unrestricted model), GCD values are less than 1.96, which shows support for convergence, while 
the NSE decreased. 
 

Table 4. The estimates when N = 500 
 

When 
N=500 

True 
value 

Prior 
(SD) 

Posterior 
(SD) 

NSE GCD HPDI [95% C.I] BF21 (βj = 0) 

β0 0 0 -0.1695 0.0018 1.16 -0.5049, 0.1522 2.52 × 10−9 
  (29.3) (0.1699)     

β1 10 17 10.3802 0.0016 0.4884 10.0687, 10.682 5.44 × 10−9 
  (50.4) (0.1557)     
β2 30.5 13.5 30.859 0.0016 -0.0408 30.5672, 31.150 1.52 × 10−7 
  (900.6) (0.1497)     
β3 15 1.4 15.1576 0.0017 -0.5979 14.8337, 15.455 6.79 × 10−8 
  (600) (0.1584)     
β4 6.5 10 6.6617 0.0016 -1.951 6.3519, 6.9380 4.81 × 10−9 
  (50) (0.1498)     

 

3.2 Convergence investigations for the Gibbs sampler 
 
Figures below show the graphical structures of the Gibbs Sampler, before and after a burn-ins of 1000 
replications, from an MCMC draw of 10000 in order to be sure of convergence, using sample sizes of 15 & 
500. The Figures labeled “sampled.betaj, j = 0,1,2,3,4” represent the draws before burn-in while 

'' . , 0,1, 2,3, 4 ''final betaj j   
are for draws after burn-ins, alongside Histogram and Normal Q-Q plots 

are provided. 
 
Fig. 1 shows the draws before and after burn ins, histogram & normal Q-Q plot of β0 when the sample size is 
15. Fig. 1(b) presents the fluntuation graph after the burn-ins. 
 

 
 

Fig. 1. Convergence diagnosis for β0 at N=15 
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Fig. 2 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β1 when the sample size is 
15. Fig. 2(b) presents the fluntuation graph after the burn-ins. 
 

 
 

Fig. 2. Convergence diagnosis for β1 at N=15 
 
Fig. 3 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β2 when the sample size is 
15. Fig. 3(b) presents the fluntuation graph after the burn-ins. 
 

 
 

Fig. 3. Convergence diagnosis for β2 at N=15 
 

Fig. 4 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β3 when the sample size is 
15. Fig. 4(b) presents the fluntuation graph after the burn-ins. 
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Fig. 4. Convergence diagnosis for β3 at N=15 
 
Fig. 5 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β4 when the sample size is 
15. Fig. 5(b) presents the fluntuation graph after the burn-ins. 
 

 
 

Fig. 5. Convergence diagnosis for β4 at N=15 
 

Fig. 6 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β0 when the sample size is 
500. Fig. 6(b) presents the fluntuation graph after the burn-ins. 
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Fig. 6. Convergence diagnosis for β0 at N = 500 
 
Fig. 7 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β1 when the sample size is 
500. Fig. 7(b) presents the fluntuation graph after the burn-ins. 
 

 
 

Fig. 7. Convergence diagnosis for β1 at N = 500 
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Fig. 8 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β2 when the sample size is 
500. Fig. 8(b) presents the fluntuation graph after the burn-ins. 
 

 
 

Fig. 8. Convergence diagnosis for β2 at N = 500 
 

Fig. 9 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β3 when the sample size is 
500. Fig. 9(b) presents the fluntuation graph after the burn-ins. 
 

 
 

Fig. 9. Convergence diagnosis for β3 at N = 500 
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Fig. 10 shows the draws before and after burn-ins, histogram & normal Q-Q plot of β4 when the sample size 
is 500. Fig. 10(b) presents the fluntuation graph after the burn-ins. 

 

 
 

Fig. 10. Convergence diagnosis for β4 at N = 500 
 

4 Summary and Conclusion 
 
This paper gave the possible cases of model restrictions that can occur in a Bayesian model comparison, 
particularly using the SDDR to compute the Bayes factors under various sample sizes of 15, 200 & 500. It 
obtained the posterior estimates of the normal linear regression model with an independent normal - gamma 
prior and the SDDR tool as the Bayes factor for model comparison in a situation where the form of the 
posterior densities are not of closed form or analytical. The tables above showed that the Bayes factor gave 
more support for the unrestricted model, M2 because log of the BF21 values of all parameters except β0 falls 
under the evidence against model 1 (restricted model). The Geweke’s Convergence Diagnostics for all the 
parameters are less than 1.96 under the various sample sizes, which showed that the Gibbs sampler 
converged at all levels of parameters. Also, the least Numerical Standard Error is recorded at the stage of 
using the highest sample size, 500. Furthermore, when the 95% Highest Posterior Density Interval (HPDI) 
does not include zero, then it shows evidence against Model 1 (the restricted model) or otherwise. Therefore, 
HPDI only showed support for the restricted model, M1 at β0, while the other regression parameters showed 
support to the unrestricted model, M2. Therefore, the Bayes factor derived for nested models remained 
consistent irrespective of changes in samples sizes, the NSE decreased as sample sizes increased and the 
Gibbs sampler converged accordingly. 
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Appendix 
 
The ‘R’ Codes Used for this Study 
 
The Algorithm below gives the set of data simulated using sample size of 15, the data analysis for the other 
Nine sample sizes can be obtained by just changing the sample sizes to the desired one using the R 
commands. The other part of it was used to obtain the Savage-Dickey density ratio (Bayes factor) for model 
comparison. 
 
## THE NORMAL LINEAR MODEL WITH INDEPEDENT NORMAL-GAMMA PRIOR 
#.............................................................. 
# THE MODEL: 
# y = XB+e, where, # y is Nx1 matrix of y’s, # e is Nx1 vector, # B is Kx1 vector, # X is NxK matrix of x’s 
#......................................................... 
### THE LIKELIHOOD FUNCTION, P(y/B,h) 
#.......................................................... 
# y/B,h ~ N(XB,h^-1), where, h=1/sigma^2 (h is precision) 
N=15 # N varies as; N1=15,N2=30,N3=45,N4=60,N5=90,N6=100,N7=200,N8=300,N9=400,N10=500 k=5 
B0=0.0 
B1=10.0 
B2=30.5 
B3=15.0 B4=6.5 
set.seed(12345) #to call for x1 use the exact number(12345) x1=runif(N,0,1) x1 set.seed(12346) ##to call for 
x2 use the exact number(12346) x2=runif(N,0,1) x2 set.seed(12347)#to call for x3 use the exact 
number(12347) x3=runif(N,0,1) x3 set.seed(12348) ##to call for x4 use the exact number(12348) 
x4=runif(N,0,1) x4 set.seed(2468) ##to call for e use the exact number(2468) e=rnorm(N,0,1) e 
y=B0+(B1*x1)+(B2*x2)+(B3*x3)+(B4*x4)+e y=matrix(y,nrow=N,ncol=1,byrow=T) y 
x=cbind(1,x1,x2,x3,x4) x 
X=as.matrix(x) X v=N-k 
xpx=t(X)%*%(X) # x’x 
xpxinv=solve(xpx) # (x’x)^-1 
xpy=t(X)%*%(y) # x’y 
B=(xpxinv)%*%(xpy)# B=(x’x)^-1*(x’y) 
B 
Y=(X)%*%(B) # Y=XB 
SSE=t((y-Y))%*%(y-Y) # e’e=(y-XB)’*(y-XB) ssqr=SSE/v # ssqr=(y-XB)*(y-XB)/v ssqr h = 
ssqrinv=(ssqr)^-1 h varE=matrix(c(h^-1,0,0,0,0,0,h^-1,0,0,0,0,0,h^-1,0,0,0,0,0,h^-1,0,0,0,0,0,h^-1), nrow=5, 
ncol=5, byrow=T) varE 
### sure;checking the ols estimates of Beta ols=lm(y~X) ols 
#......................................................... 
### THE PRIOR (Independent Normal-Gamma),p(B,h)=p(B).p(h) 
#.......................................................... # B/h ~ N(Bprior,Vpri) 
Bpri=rbind(0,27,13.5,1.4,10.0) # B of prior (5 x 1)vector 
Bpri=as.matrix(Bpri, nrow=5,ncol=1) 
Bpri 
Vpri=matrix(c(29.30^2,0,0,0,0,0,50.4^2,0,0,0,0,0,900.60^2,0,0,0,0,0,600.0^2,0,0,0,0,0,50.0^2),nrow=5,ncol
=5,byrow=T) 
Vpri 
Vinvpri=solve(Vpri) 
Vinvpri 
# h ~ G(ssqrinvpri,vpri), where, ssqrinvpri=s^-2 #let sigma=1000, # ssqrinvpri=h=1/sigma^2=1/1000000^2 
ssqrinvpri=1/(5000)^2 ssqrinvpri ssqrpri=1/(ssqrinvpri) ssqrpri vpri=5.46 # 1% of N # noninformative prior 
## deduced that prior means & var-covs are: 
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## FOR B/h; 
# E(B/h)=Bpri 
Bprior.mean=Bpri 
Bprior.mean 
# Var(B/h)=Vpri #prior covariance matrix of B 
Bpri.varcov=Vpri 
Bpri.varcov 
## FOR h; 
# E(h)=ssqrinvpri & degree of freedom vpri h.mean=ssqrinvpri 
h.mean hd.f=vpri hd.f 
#.......................................................... 
### THE POSTERIOR, p(B,h/y) 
#.......................................................... # the posterior conditionals do not have an analytical form 
# but we can only sample through a posterior simulation technique called the Gibbs Sampler 
## from p(B,h/y)=P(y/B,h).p(B).p(h), it was deduced that 
## p(B,h/y) (not equal to) p(B/y,h).p(h/y,B), then; 
### B/y,h ~ N(Bpos,Vpos) #multivariate-normal distn 
Vpos=solve(Vinvpri+(drop(h)*xpx)) # Vpos=(Vpri^-1+h(xpx)) 
Vpos 
Bpos=Vpos%*%((Vinvpri%*%Bpri)+(drop(h)*xpy)) #Bpos=Vpos(Vpri^-1+h(xpy)) 
Bpos 
### h/y,B ~ G(ssqrinvpos,vpos) #Gamma distn vpos=N+vpri vpos 
ssqrpos=(SSE+(vpri*ssqrpri))/(vpos) ssqrpos ssqrinvpos=solve(ssqrpos) ssqrinvpos 
#.......................................................... 
#THE GIBBS SAMPLER 
#............................................................ 
# Define the number of runs for the sampler and create storage vectors for the samples mcmc = 10000 
sampled.beta0 = numeric(mcmc) sampled.beta1 = numeric(mcmc) sampled.beta2 = numeric(mcmc) 
sampled.beta3 = numeric(mcmc) sampled.beta4 = numeric(mcmc) 
sampled.h = numeric(mcmc) 
Bpri=rbind(0,27,13.5,1.4,10.0) # B of prior (5 x 1)vector 
Bpri=as.matrix(Bpri, nrow=5,ncol=1) 
Bpri 
Vpri=matrix(c(29.30^2,0,0,0,0,0,50.4^2,0,0,0,0,0,900.60^2,0,0,0,0,0,600.0^2,0,0,0,0,0,50.0^2),nrow=5,ncol
=5,byrow=T) 
Vpri 
Vinvpri=solve(Vpri) 
Vinvpri 
# h ~ G(ssqrinvpri,vpri), where, ssqrinvpri=s^-2 #let sigma=1000, # ssqrinvpri=h=1/sigma^2=1/1000000^2 
ssqrinvpri=1/(5000)^2 ssqrinvpri ssqrpri=1/(ssqrinvpri) ssqrpri vpri=5.46 # 1% of N # noninformative prior 
# Initialize and run the loop current.beta = rbind(4,15,40,50,60) current.beta = as.matrix(current.beta) 
current.h = 1 sampled.beta0[1] = current.beta[1,] sampled.beta1[1] = current.beta[2,] sampled.beta2[1] = 
current.beta[3,] sampled.beta3[1] = current.beta[4,] sampled.beta4[1] = current.beta[5,] sampled.h[1] = 
current.h 
for(i in 2:mcmc){ 

# Sample from the full conditional of B/h library(MASS) current.h = 1 
Bposj = Vpos%*%((Vinvpri%*%Bpri)+(drop(current.h)*xpy)) #Bpos=Vpos(Vpri^-1+h(xpy)) 
Vposj=solve(Vinvpri+(drop(current.h)*xpx)) # Vpos=(Vpri^-1+h(xpx)) current.beta = mvrnorm(1, Bposj, 
Vposj) current.beta 
current.beta = as.matrix(current.beta) current.beta 
# Sample from the full conditional of h vpos=N+vpri vpos 
SSe = t(y-(X%*%(current.beta)))%*%(y-(X%*%(current.beta))) ssqrpos = (SSe+(vpri*ssqrpri))/(vpos) 
ssqrpos ssqrinvpos = ssqrpos^-1 ssqrinvpos current.h = rgamma(1, ssqrinvpos, vpos) 
# Store the results 
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sampled.beta0[i] = current.beta[1,] sampled.beta1[i] = current.beta[2,] sampled.beta2[i] = current.beta[3,] 
sampled.beta3[i] = current.beta[4,] sampled.beta4[i] = current.beta[5,] sampled.h[i] = current.h 

} 
# Trace plots #before burnin plot(sampled.beta0, type = ’l’) mean(sampled.beta0) qqnorm(sampled.beta0) 
plot(sampled.beta1, type = ’l’) mean(sampled.beta1) qqnorm(sampled.beta1) plot(sampled.beta2, type = ’l’) 
mean(sampled.beta2) qqnorm(sampled.beta2) plot(sampled.beta3, type = ’l’) qqnorm(sampled.beta3) 
mean(sampled.beta3) plot(sampled.beta4, type = ’l’) mean(sampled.beta4) qqnorm(sampled.beta4) 
plot(sampled.h, type = ’l’) mean(sampled.h) qqnorm(sampled.h) 
burnin=1000 final.beta0 = sampled.beta0[-(1:burnin)] final.beta1 = sampled.beta1[-(1:burnin)] final.beta2 = 
sampled.beta2[-(1:burnin)] final.beta3 = sampled.beta3[-(1:burnin)] final.beta4 = sampled.beta4[-(1:burnin)] 
final.h = sampled.h[-(1:burnin)] 
#trace plot #after burnin plot(final.beta0, type = ’l’) mean(final.beta0) qqnorm(final.beta0) plot(final.beta1, 
type = ’l’) mean(final.beta1) qqnorm(final.beta1) plot(final.beta2, type = ’l’) mean(final.beta2) 
qqnorm(final.beta2) plot(final.beta3, type = ’l’) mean(final.beta3) qqnorm(final.beta3) plot(final.beta4, type 
= ’l’) mean(final.beta4) qqnorm(final.beta4) plot(final.h, type = ’l’) mean(final.h) 
# Histograms of the samples minus burnin hist(final.beta0, prob=TRUE, xlab="x-variable", ylim=c(-4,4), 
main="normal curve over histogram") hist(final.beta0) abline(lsfit(1:10000, sampled.beta0, 
intercept=FALSE), col=3) abline(a=NULL, b=NULL, h=NULL, v=NULL, reg=NULL, coef=NULL, 
untf=FALSE,col = ’red’, lwd = 3) hist(final.beta1) abline(lsfit(1:10000, sampled.beta1, intercept=FALSE), 
col=3) hist(final.beta2) abline(lsfit(1:10000, sampled.beta2, intercept=FALSE), col=3) hist(final.beta3) 
abline(lsfit(1:10000, sampled.beta3, intercept=FALSE), col=3) hist(final.beta4) abline(lsfit(1:10000, 
sampled.beta4, intercept=FALSE), col=3) hist(final.h) 
# curve showing posterior density 
## curve(final.beta0, from=0, to=1,xlab="p",ylab="Density",lty=1,lwd=4) 
abline(v = h, col = ’red’, lwd = 3) 
mean(final.beta0) mean(final.beta1) mean(final.beta2) mean(final.beta3) mean(final.beta4) mean(final.h) 
#THE CREDIBLE INTERVALS OF B AND h beta0.interval = quantile(final.beta0, c(.025,.5, .975)) 
beta0.interval beta1.interval = quantile(final.beta0, c(.025,.5, .975)) beta1.interval beta2.interval = 
quantile(final.beta0, c(.025,.5, .975)) beta2.interval beta3.interval = quantile(final.beta0, c(.025,0.5,.975)) 
beta3.interval beta4.interval = quantile(final.beta0, c(.025,.5, .975)) beta4.interval 
h.interval = quantile(final.h, c(.025,.5, .975)) 
h.interval 
## SUMMARY OF THE GIBBS SAMPLER ESTIMATES summary(sampled.beta0) 
summary(sampled.beta1) summary(sampled.beta2) summary(sampled.beta3) summary(sampled.beta4) 
summary(sampled.h) 
### install packages ’coda’ and ’boa’ 
### the MCMC Output analysis & Diagnostics with the coda library 
## Install.packages("coda") library("coda") ## codamenu() help(package="coda") 
## to obtain the summary of gibbs sampled,trace plots and density curve 
## for final.beta0 b0.mcmc=mcmc(final.beta0) summary(b0.mcmc) plot(b0.mcmc, col="blue") title(’b0’, 
xlab = ’mcmc’, ylab = ’b0.mcmc’) autocorr.plot(b0.mcmc, col="blue") effectiveSize(b0.mcmc) # watchout 
for capital "S" 
## for final.beta1 b1.mcmc=mcmc(final.beta1) summary(b1.mcmc) plot(b1.mcmc, col="pink") title(’b1’, 
xlab = ’mcmc’, ylab = ’b1.mcmc’) autocorr.plot(b1.mcmc, col="pink") effectiveSize(b1.mcmc) # watchout 
for capital "S" ## for final.beta2 b2.mcmc=mcmc(final.beta2) summary(b2.mcmc) plot(b2.mcmc, 
col="purple") title(’b2’, xlab = ’mcmc’, ylab = ’b2.mcmc’) autocorr.plot(b2.mcmc, col="purple") 
effectiveSize(b2.mcmc) # watchout for capital "S" 
## for final.beta3 b3.mcmc=mcmc(final.beta3) summary(b3.mcmc) plot(b3.mcmc, col="blue") title(’b3’, 
xlab = ’mcmc’, ylab = ’b3.mcmc’) autocorr.plot(b3.mcmc, col="blue") effectiveSize(b3.mcmc) # watchout 
for capital "S" 
## for final.beta4 b4.mcmc=mcmc(final.beta4) summary(b4.mcmc) plot(b4.mcmc, col="green") title(’b4’, 
xlab = ’mcmc’, ylab = ’b4.mcmc’) autocorr.plot(b4.mcmc, col="green") effectiveSize(b4.mcmc) # watchout 
for capital "S" 
## for final.h 
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h.mcmc=mcmc(final.h) summary(h.mcmc) plot(h.mcmc, col="blue") title(’h’, xlab = ’mcmc’, ylab = 
’h.mcmc’) autocorr.plot(h.mcmc, col="blue") effectiveSize(h.mcmc) # watchout for capital "S" 
## GEWEKE’S CONVERGENCE DIAGNOSTICS (GEWEKE’S CD) 
## frac1 is the fraction of d 1st-set of est of B after burnin i.e 1000/9000 
## frac2 is the fraction of d last-set of est of B after burnin 
## DECISION RULE: if CD<1.96, then convergence of d-# --MCMC algorithm has occured for all the 
parameters library(coda) geweke.diag(final.beta0, frac1=0.11, frac2=0.55) geweke.diag(final.beta1, 
frac1=0.11, frac2=0.55) geweke.diag(final.beta2, frac1=0.11, frac2=0.55) geweke.diag(final.beta3, 
frac1=0.11, frac2=0.55) geweke.diag(final.beta4, frac1=0.11, frac2=0.55) #geweke.diag(final.h, frac1=0.11, 
frac2=0.55) 
#### GEWEKE CONVERGENCE PLOTS ###### 
geweke.plot(mcmc(final.beta0), frac1 = 0.11, frac2 = 0.55, nbins = 20, pvalue = 0.05, auto.layout = TRUE) 
geweke.plot(mcmc(final.beta1), frac1 = 0.11, frac2 = 0.55, nbins = 20, pvalue = 0.05, auto.layout = TRUE) 
geweke.plot(mcmc(final.beta2), frac1 = 0.11, frac2 = 0.55, nbins = 20, pvalue = 0.05, auto.layout = TRUE) 
geweke.plot(mcmc(final.beta3), frac1 = 0.11, frac2 = 0.55, nbins = 20, pvalue = 0.05, auto.layout = TRUE) 
geweke.plot(mcmc(final.beta4), frac1 = 0.11, frac2 = 0.55, nbins = 20, pvalue = 0.05, auto.layout = TRUE) 
#geweke.plot(mcmc(final.h), frac1 = 0.11, frac2 = 0.55, nbins = 20, pvalue = 0.05, auto.layout = TRUE) 
## HIGHEST PROBABILITY DENSITY (HPD) 
HPDinterval(mcmc(final.beta0), prob = 0.95, attr(’probability’)) 
HPDinterval(mcmc(final.beta1), prob = 0.95, attr(’probability’)) 
HPDinterval(mcmc(final.beta2), prob = 0.95, attr(’probability’)) 
HPDinterval(mcmc(final.beta3), prob = 0.95, attr(’probability’)) 
HPDinterval(mcmc(final.beta4), prob = 0.95, attr(’probability’)) 
HPDinterval(mcmc(final.h), prob = 0.95, attr(’probability’)) ###..................................................... 
 
THE BAYES FACTOR (SDDR) 
 
#..................................................... 
## APPLICATION OF BAYES FACTOR (SDDR) FOR MODEL COMPARISON 
## THE NORMAL LINEAR MODEL WITH INDEPEDENT NORMAL-GAMMA PRIOR 
#.............................................................. 
##BAYES FACTOR (SDDR) MODEL COMPARISON 
#................................................... 
## H0:M1(RESTRICTED) VS H1:M2 (UNRESTRICTED) 
#....................................................... 
# let the unrestricted model be M2 
# y = XB+e, where, # y is Nx1 matrix of y’s, # e is Nx1 vector, # B is Kx1 vector, # X is NxK matrix of x’s 
# y=B0+(B1*x1)+(B2*x2)+(B3*x3)+(B4*x4)+e 
#......................................................... 
# the restricted model be M1 
#..................................................... 
# y0=(B1*x1)+(B2*x2)+(B3*x3)+(B4*x4)+e # H0:B0=0 VS H1: NOT H0 
# y1=B0+(B2*x2))+(B3*x3)+(B4*x4)+e # H0:B1=0 VS H1: NOT H0 # 
y2=B0+(B1*x1)+(B3*x3)+(B4*x4)+e # H0:B2=0 VS H1: NOT H0 
# y3=B0+(B1*x1)+(B2*x2)+(B4*x4)+e # H0:B3=0 VS H1: NOT H0 # 
y4=B0+(B1*x1)+(B2*x2)+(B3*x3)+e # H0:B4=0 VS H1: NOT H0 #.................................................... 
### THE LIKELIHOOD FUNCTION, P(y/B,h) 
#.......................................................... 
# y/B,h ~ N(XB,h^-1), where, h=1/sigma^2 (h is precision) 
N=15 # N varies as; N1=15,N2=45,N3=60,N4=60,N5=90,N6=100,N7=200,N8=300,N9=400,N10=500 k=4 
#B0=0.0 
B1=10.0 
B2=30.5 
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B3=15.0 B4=6.5 set.seed(12345) #to call for x1 use the exact number(12345) x1=runif(N,0,1) x1 
set.seed(12346) ##to call for x2 use the exact number(12346) x2=runif(N,0,1) x2 set.seed(12347)#to call for 
x3 use the exact number(12347) x3=runif(N,0,1) x3 set.seed(12348) ##to call for x4 use the exact 
number(12348) x4=runif(N,0,1) x4 set.seed(2468) ##to call for e use the exact number(2468) 
e=rnorm(N,0,1) e 
#............................................... 
# H0:B0=0 VS H1: NOT H0 
y0=(B1*x1)+(B2*x2)+(B3*x3)+(B4*x4)+e # H0:B0=0 VS H1: NOT H0 #.................................................. 
y0=matrix(y0,nrow=N,ncol=1,byrow=T) y0 
x=cbind(x1,x2,x3,x4) x 
X=as.matrix(x) X v=N-k 
xpx=t(X)%*%(X) # x’x 
xpxinv=solve(xpx) # (x’x)^-1 xpy0=t(X)%*%(y0) # x’y 
B=(xpxinv)%*%(xpy0)# B=(x’x)^-1*(x’y) 
B 
Y=(X)%*%(B) # Y=XB 
SSE=t((y0-Y))%*%(y0-Y) # SSE=(y-XB)’*(y-XB) ssqr=SSE/v # ssqr=(y-XB)*(y-XB)/v 
h=ssqrinv=(ssqr)^-1 h varE=matrix(c(h^-1,0,0,0,0,h^-1,0,0,0,0,h^-1,0,0,0,0,h^-1), nrow=4, ncol=4, 
byrow=T) varE 
### sure;checking the ols estimates of Beta ols=lm(y0~X) ols 
#......................................................... 
### THE PRIOR (Independent Normal-Gamma),p(B,h)=p(B).p(h) 
#.......................................................... # B ~ N(Bprior,Vpri) 
Bpri=rbind(27,13.5,1.4,10.0) # B of prior (4 x 1)vector 
Bpri=as.matrix(Bpri, nrow=4,ncol=1) 
Bpri 
Vpri=matrix(c(50.4^2,0,0,0,0,900.6^2,0,0,0,0,600.0^2,0,0,0,0,50.0^2),nrow=4,ncol=4,byrow=T) Vpri 
Vinvpri=solve(Vpri) 
Vinvpri 
# h ~ G(ssqrinvpri,vpri), where, ssqrinvpri=s^-2 #let sigma=1000, # ssqrinvpri=h=1/sigma^2=1/5000^2 
ssqrinvpri=1/(5000)^2 ssqrinvpri ssqrpri=1/(ssqrinvpri) ssqrpri vpri=5.46 # 1% of N # noninformative prior 
## deduced that prior means & var-covs are: 
## FOR B/h; 
# E(B/h)=Bpri 
Bprior.mean=Bpri 
Bprior.mean 
# Var(B/h)=Vpri #prior covariance matrix of B 
Bpri.varcov=Vpri 
Bpri.varcov 
## FOR h; 
# E(h)=ssqrinvpri & degree of freedom vpri h.mean=ssqrinvpri 
h.mean hd.f=vpri hd.f 
#.......................................................... 
### THE POSTERIOR, p(B,h/y) 
#.......................................................... # the posterior conditionals do not have an analytical form 
# but we can only sample through a posterior simulation technique called the Gibbs Sampler 
## from p(B,h/y)=P(y/B,h).p(B).p(h), it was deduced that 
## p(B,h/y) (not equal to) p(B/y,h).p(h/y,B), then; 
### B/y,h ~ N(Bpos,Vpos) #multivariate-normal distn 
Vpos=solve(Vinvpri+(drop(h)*xpx)) # Vpos=(Vpri^-1+h(xpx)) 
Vpos 
Bpos=Vpos%*%((Vinvpri%*%Bpri)+(drop(h)*xpy0)) #Bpos=Vpos(Vpri^-1+h(xpy)) 
Bpos 
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### h/y,B ~ G(ssqrinvpos,vpos) #Gamma distn vpos=N+vpri vpos ssqrpos=(SSE+(vpri*ssqrpri))/(vpos) 
ssqrpos ssqrinvpos=solve(ssqrpos) ssqrinvpos 
#.......................................................... 
#THE GIBBS SAMPLER 
#............................................................ 
# Define the number of runs for the sampler and create storage vectors for the samples mcmc = 10000 
#sampled.beta0 = numeric(mcmc) sampled.beta1 = numeric(mcmc) sampled.beta2 = numeric(mcmc) 
sampled.beta3 = numeric(mcmc) sampled.beta4 = numeric(mcmc) 
sampled.h = numeric(mcmc) 
# Set the prior parameters. We’ll use an uninformative prior centered at 2 and an uninformative prior for phi. 
Bpri=rbind(27,13.5,1.4,10.0) # B of prior (4 x 1)vector 
Bpri=as.matrix(Bpri, nrow=4,ncol=1) 
Bpri 
Vpri=matrix(c(50.4^2,0,0,0,0,900.6^2,0,0,0,0,600.0^2,0,0,0,0,50.0^2),nrow=4,ncol=4,byrow=T) 
Vpri 
Vinvpri=solve(Vpri) 
Vinvpri 
# h ~ G(ssqrinvpri,vpri), where, ssqrinvpri=s^-2 #let sigma=1000, # ssqrinvpri=h=1/sigma^2=1/1000000^2 
ssqrinvpri=1/(5000)^2 ssqrinvpri ssqrpri=1/(ssqrinvpri) ssqrpri vpri=5.46 # 1% of N # noninformative prior 
# Initialize and run the loop current.beta = rbind(15,40,50,60) current.beta = as.matrix(current.beta) current.h 
= 1 
#sampled.beta0[1] = current.beta[1,] sampled.beta1[1] = current.beta[1,] sampled.beta2[1] = current.beta[2,] 
sampled.beta3[1] = current.beta[3,] sampled.beta4[1] = current.beta[4,] 
sampled.h[1] = current.h 
for(i in 2:mcmc){ 

# Sample from the full conditional of B/h library(MASS) current.h = 1 
Bposj = Vpos%*%((Vinvpri%*%Bpri)+(drop(current.h)*xpy0)) #Bpos=Vpos(Vpri^-1+h(xpy)) 
Vposj=solve(Vinvpri+(drop(current.h)*xpx)) # Vpos=(Vpri^-1+h(xpx)) current.beta = mvrnorm(1, Bposj, 
Vposj) current.beta current.beta=as.matrix(current.beta) current.beta 
# Sample from the full conditional of h vpos=N+vpri vpos 
SSe = t(y0-(X%*%(current.beta)))%*%(y0-(X%*%(current.beta))) ssqrpos = (SSe+(vpri*ssqrpri))/(vpos) 
ssqrpos ssqrinvpos = ssqrpos^-1 ssqrinvpos current.h = rgamma(1, ssqrinvpos, vpos) 
# Store the results 
#sampled.beta0[i] = current.beta[1,] sampled.beta1[i] = current.beta[1,] sampled.beta2[i] = current.beta[2,] 
sampled.beta3[i] = current.beta[3,] sampled.beta4[i] = current.beta[4,] 
sampled.h[i] = current.h 

} 
burnin=1000 
#final.beta0 = sampled.beta0[-(1:burnin)] final.beta1 = sampled.beta1[-(1:burnin)] final.beta2 = 
sampled.beta2[-(1:burnin)] final.beta3 = sampled.beta3[-(1:burnin)] final.beta4 = sampled.beta4[-(1:burnin)] 
final.h = sampled.h[-(1:burnin)] 
# to represent the BAYES FACTOR SUMMATION #final.beta0 = mean(final.beta0) final.beta1 = 
mean(final.beta1) final.beta2 = mean(final.beta2) final.beta3 = mean(final.beta3) final.beta4 = 
mean(final.beta4) mean(final.h) 
#............................................... 
# THE BAYES FACTOR (SDDR-GENERALIZATION) 
#........................................... 
# FOR DENOMENATOR 
# P(Beta=B0/M2)=1/(2*3.142)^(k/2)*(det(Vpri))^(-0.5)*exp(-0.5*t((B-Bpri))%*%(solve(Vpri))%*%(B-
Bpri)) pD = 1/(2*3.142)^(k/2)*(det(Vpri))^(-0.5)*exp(-(0.5)*t(B-Bpri)%*%(solve(Vpri))%*%(B-Bpri)) pD 
#............................................. 
#for B0=0 
## NUMERATOR 
# P(B=B0/y,M2) # from unreduced model 
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## p(B=B0/y,h^(s),M2)=1/(2pi)^k/2*(det(Vpos))^-0.5*exp[-1/2*(B0-Bpos)’*solve(Vpos)*(B0-Bpos)] 
## (1/S1)*sum(p(B=B0/y,h^(s),M2)) = P(B=B0/y,M2) 
## S1=S-S0, implies that S1=10000-1000(mcmc-burnin) S1 = 9000 p = 1/S1 
## OR (1/S1)*(final.beta1+final.beta2+final.beta3+final.beta4)= P(B=B0/y,M2) pN = 
p*(final.beta1+final.beta2+final.beta3+final.beta4) pN 
## THE BAYES FACTOR (SDDR generalization) 
## BF12 = P(B=B0/y,M2)/P(Beta=B0/M2) 
BF12=pN/pD 
BF12# THE BAYES FACTOR for Bj, j=1,2,...,k 
## using jeffrey’s suggestion 
BF21=1/BF12 
BF21 
_______________________________________________________________________________________ 
© 2020 Akanbi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sdiarticle4.com/review-history/54061 


