Cabahug, Isagani S. (2023) Maximum Linear Forest of Graphs Resulting from Some Binary Operations. Asian Research Journal of Mathematics, 19 (10). pp. 1-6. ISSN 2456-477X
Text
Cabahug19102023ARJOM102678.pdf - Published Version
Download (566kB)
Cabahug19102023ARJOM102678.pdf - Published Version
Download (566kB)
Official URL: https://doi.org/10.9734/arjom/2023/v19i10720
Abstract
For a connected nontrivial graph G, the maximum linear forest of G is the linear forest having maximum number of edges. The number of edges in a maximum linear forest is denoted by
`(G). In this paper we determine the maximum linear forest of the join and union of nontrivial connected graphs G and H , denoted by G + H and G H , respectively.
Item Type: | Article |
---|---|
Subjects: | Asian STM > Mathematical Science |
Depositing User: | Managing Editor |
Date Deposited: | 21 Sep 2023 08:14 |
Last Modified: | 21 Sep 2023 08:14 |
URI: | http://journal.send2sub.com/id/eprint/2017 |