Kenyon, Kern E. (2021) Mountain Atmospherics. Natural Science, 13 (06). pp. 208-210. ISSN 2150-4091
ns_2021060810522764.pdf - Published Version
Download (160kB)
Abstract
The purpose of the work is to examine the effects of compressibility on air properties when a wind blows against a sloping mountain surface. Previous research of air compression effects include the low speed wing and the crests of surface gravity waves propagating in the wind. In both cases, an algebraic expression was obtained for the lift force. When wind blows across a mountain and the assumption is made that a boundary layer of compressed air forms and remains attached to the mountain, a physical-chemical theory predicts that the wind will have no shear and the pressure and density will decrease with increasing altitude at the same rate. Combining Bernoulli’s law along streamlines with the cross-stream force balance, pressure gradient equals centrifugal force, and the perfect gas law for air, is the model used here.
Item Type: | Article |
---|---|
Subjects: | Asian STM > Medical Science |
Depositing User: | Managing Editor |
Date Deposited: | 10 Nov 2023 05:08 |
Last Modified: | 10 Nov 2023 05:08 |
URI: | http://journal.send2sub.com/id/eprint/2620 |